MagnetoHemoDynamics Effect on Electrocardiograms

  • V. Martin
  • A. Drochon
  • O. Fokapu
  • J-F. Gerbeau
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6666)


In presence of a high magnetic field, the blood flow in the aorta induces an electrical potential which is responsible for an increase of the T-wave in the electrocardiogram (ECG). This phenomenon may perturb ECG-gated imaging. The aim of this numerical study is to reproduce this experimental observation through computer simulations. The proposed model consists of three components: magnetohydrodynamics (MHD) in the aorta, bidomain equations in the heart and electrical diffusion in the rest of the body. These models are strongly coupled together and solved with finite elements. Some numerical results without and with a magnetic field are presented and discussed. When the magnetic field increases from B = 0T to B = 3T, it is observed numerically that the potential in the lead I of the ECG doubles during the T-wave, reaching the level of the QRS peak. All numerical computations were performed on a realistic “averaged” human model.


Electrical Potential Domain Decomposition Domain Decomposition Method Hartmann Number Fractional Step Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abi-Abdallah, D., Drochon, A., Robin, V., Fokapu, O.: Pulsed magnetohydrodynamic blood flow in a rigid vessel under physiological pressure gradient. Comput. Methods Biomech. Biomed. Engin. 12(4), 445–458 (2009)CrossRefGoogle Scholar
  2. 2.
    Abi-Abdallah, D., Robin, V., Drochon, A., Fokapu, O.: Alterations in human ecg due to the magnetohydrodynamic effect: a method for accurate r peak detection in the presence of high mhd artifacts. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 1842–1845 (2007)Google Scholar
  3. 3.
    Boulakia, M., Cazeau, S., Fernández, M.A., Gerbeau, J.-F., Zemzemi, N.: Mathematical modeling of electrocardiograms: a numerical study. Ann. Biomed. Eng. 38(3), 1071–1097 (2010)CrossRefGoogle Scholar
  4. 4.
    Chapelle, D., Fernández, M.A., Gerbeau, J.-F., Moireau, P., Sainte-Marie, J., Zemzemi, N.: Numerical simulation of the electromechanical activity of the heart. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 357–365. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Gerbeau, J.-F., Le Bris, C., Lelièvre, T.: Mathematical methods for the Magnetohydrodynamics of liquid metals. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2006)CrossRefzbMATHGoogle Scholar
  6. 6.
    Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comp. Meth. Appl. Mech. Engng. 195(44-47), 6011–6045 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gupta, A., Weeks, A.R., Richie, S.M.: Simulation of elevated T-waves of an ECG inside a static magnetic field (MRI). IEEE Transactions on Biomedical Engineering 55(7), 1890–1896 (2008)CrossRefGoogle Scholar
  8. 8.
    Kinouchi, Y., Yamaguchi, H., Tenforde, T.S.: Theoretical analysis of magnetic field interactions with aortic blood flow. Bioelectromagnetics 17, 21–32 (1996)CrossRefGoogle Scholar
  9. 9.
    Luo, R., Zhang, Y., Xia, L.: Electrophysiological modeling study of ECG T-wave alternation caused by ultrahigh static magnetic fields. In: 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2005, pp. 3012–3015. IEEE, Los Alamitos (2006)Google Scholar
  10. 10.
    Mitchell, C.C., Schaeffer, D.G.: A two-current model for the dynamics of cardiac membrane. Bulletin Math. Bio. 65, 767–793 (2003)CrossRefzbMATHGoogle Scholar
  11. 11.
    Quarteroni, A., Valli, A.: Domain decomposition methods for partial differential equations. The Clarendon Press Oxford University Press, New York (1999); Oxford Science PublicationszbMATHGoogle Scholar
  12. 12.
    Sundnes, J., Lines, G.T., Cai, X., Nielsen, B.F., Mardal, K.-A., Tveito, A.: Computing the electrical activity in the heart. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  13. 13.
    Tenforde, T.S.: Magnetically induced electric fields and currents in the circulatory system. Progress in Biophysics and Molecular Biology 87, 279–288 (2005)CrossRefGoogle Scholar
  14. 14.
    Tenforde, T.S., Gaffey, C.T., Moyer, B.R., Budinger, T.F.: Cardiovascular alterations in macaca monkeys exposed to stationary magnetic fields: experimental observations and theoretical analysis. Bioelectromagnetics 4, 1–9 (1983)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • V. Martin
    • 1
    • 2
  • A. Drochon
    • 2
  • O. Fokapu
    • 2
  • J-F. Gerbeau
    • 1
  1. 1.INRIA Paris-RocquencourtLe ChesnayFrance
  2. 2.Université de Technologie de CompiègneFrance

Personalised recommendations