Towards High Resolution Computational Models of the Cardiac Conduction System: A Pipeline for Characterization of Purkinje-Ventricular-Junctions

  • Daniel Romero
  • Frank B. Sachse
  • Rafael Sebastian
  • Alejandro F. Frangi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6666)


The cardiac conduction system (CCS) has been in the spot light of the clinical and modeling community in recent years because of its fundament role in physiology and pathophysiology of the heart. Experimental research has focused mainly on investigating the electrical properties of the Purkinje-ventricular-junctions (PVJs). The structure of the PVJs has only been described through schematic drawings but not thoroughly studied. In this work confocal microscopy was used with the aim of three-dimensional characterization of PVJs. Adult rabbit hearts were labeled with fluorescent dyes, imaged with confocal microscopy and Purkinje fibers differentiated from other cardiac tissue by their lack of transverse tubular system on the membrane. A semi-automatic pipeline to segment the network was implemented, using region growing and manual revisions. The resulting three-dimensional reconstructions were used to compute centerlines of the Purkinje fibers. Highly complex structural configurations were found at a subcellular resolution including anastomoses with furcations of up to 5 paths. We suggest that the presented analysis and parametrization of the centerline skeleton of the PVJs will help to improve automated Purkinje network generation algorithms.


Purkinje system cardiac electrophysiology confocal mi- croscopy labeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Guyton, A., Hall, J. (eds.): Textbook of Medical Physiology, Saunders, Philadelphia (2006)Google Scholar
  2. 2.
    Tranum-Jensen, J., Wilde, A.A., Vermeulen, J.T., Janse, M.J.: Morphology of electrophysiologically identified junctions between purkinje fibers and ventricular muscle in rabbit and pig hearts. Circ. Res. 69(2), 429–437 (1991)CrossRefGoogle Scholar
  3. 3.
    Cates, A.W., Smith, W.M., Ideker, R.E., Pollard, A.E.: Purkinje and ventricular contributions to endocardial activation sequence in perfused rabbit right ventricle. Am. J. Physiol. Heart Circ. Physiol. 281(2), H490–H505 (2001)Google Scholar
  4. 4.
    Dosdall, D.J., Cheng, K.A., Huang, J., Allison, J.S., Allred, J.D., Smith, W.M., Ideker, R.E.: Transmural and endocardial purkinje activation in pigs before local myocardial activation after defibrillation shocks. Heart Rhythm 4(6), 758–765 (2007)CrossRefGoogle Scholar
  5. 5.
    Tabereaux, P.B., Walcott, G.P., Rogers, J.M., Kim, J., Dosdall, D.J., Robertson, P.G., Killingsworth, C.R., Smith, W.M., Ideker, R.E.: Activation patterns of purkinje fibers during long-duration ventricular fibrillation in an isolated canine heart model. Circulation 116(10), 1113–1119 (2007)CrossRefGoogle Scholar
  6. 6.
    Sinha, A., Schmidt, M., Marschang, H., et al.: Role of left ventricular scar and purkinje-like potentials during mapping and ablation of ventricular fibrillation in dilated cardiomyopathy. Pacing Clin Electrophysiol. 32, 286 (2009)CrossRefGoogle Scholar
  7. 7.
    Wiedmann, R., Tan, R., Joyner, R.: Discontinuous conduction at purkinje-ventricular muscle junction. Am. J. Physiol. 271, H1507–H1516 (1996)Google Scholar
  8. 8.
    Savio, E., Goldhaber, J.I., Bridge, J.H.B., Sachse, F.B.: A framework for analyzing confocal images of transversal tubules in cardiomyocytes. In: Sachse, F.B., Seemann, G. (eds.) FIHM 2007. LNCS, vol. 4466, pp. 110–119. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    O’Donnell, L., Westin, C.-F., Grimson, W.E.L., Ruiz-Alzola, J., Shenton, M.E., Kikinis, R.: Phase-based user-steered image segmentation. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 1022–1030. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Antiga, L., Ene-Iordache, B., Remuzzi, A.: Centerline computation and geometric analysis of branching tubular surfaces with application to blood vessel modeling. Journal of WSCG 1-3(11) (Febuary 2003)Google Scholar
  11. 11.
    Ayettey, A., Navaratnam, V.: The t-tubule system in the specialized and general myocardium of the rat. J. Anat. 127, 125–140 (1978)Google Scholar
  12. 12.
    Canale, E., Campbell, G., Uehara, Y., Fujiwara, T., Smolich, J.: Sheep cardiac purkinje fibers: Configurational changes during the cardiac cycle. Cell Tissue Res. 232, 97–110 (1983)CrossRefGoogle Scholar
  13. 13.
    Tawara, S.: Das reizleitungssystem des säugetierherzens. eine anatomisch- histologische studie über das atrioventricularbündel und die purkinjeschen fäden. Jena, Verlag v. Gustav Fischer (1906)Google Scholar
  14. 14.
    Ijiri, T., Ashihara, T., Yamaguchi, T., Takayama, K., Igarashi, T., Shimada, T., Namba, T., Haraguchi, R., Nakazawa, K.: A procedural method for modeling the purkinje fibers of the heart. J. Physiol. Sci. 58(7), 481–486 (2008)CrossRefGoogle Scholar
  15. 15.
    Pollard, A., Barr, R.: Computer simulations of activation in an anatomically based model of the human ventricular conduction system. IEEE Trans. Biomed. Eng. 38(10), 982–996 (1991)CrossRefGoogle Scholar
  16. 16.
    Romero, D., Sebastian, R., Bijnens, B.H., Zimmerman, V., Boyle, P.M., Vigmond, E.J., Frangi, A.F.: Effects of the purkinje system and cardiac geometry on biventricular pacing: A model study. Ann. Biomed. Eng., 1388–1398 (January 2010)Google Scholar
  17. 17.
    Zimmerman, V., Sebastian, R., Bijnens, B., Frangi, A.: Modeling the purkinje conduction system with a non deterministic rule based iterative method. Computers in Cardiology 36, 461–464 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Daniel Romero
    • 1
  • Frank B. Sachse
    • 3
    • 4
  • Rafael Sebastian
    • 5
  • Alejandro F. Frangi
    • 1
    • 2
  1. 1.Computational Imaging & Simulation Technologies in BiomedicineUniversitat Pompeu Fabra, and Networking Biomedical Research Center on Bioengineering, Biomaterials and NanomedicineBarcelonaSpain
  2. 2.Institució Catalana de Recerca i Estudis AvançatsBarcelonaSpain
  3. 3.Nora Eccles Harrison Cardiovascular Research & Training InstituteUniversity of UtahSalt Lake CityUSA
  4. 4.Department of BioengineeringUniversity of UtahSalt Lake CityUSA
  5. 5.Department of Computer ScienceUniversitat de ValenciaSpain

Personalised recommendations