Advertisement

Regionally Optimised Mathematical Models of Cardiac Myocyte Orientation in Rat Hearts

  • Ilyas E. Karadag
  • Martin Bishop
  • Patrick W. Hales
  • Jürgen E. Schneider
  • Peter Kohl
  • David Gavaghan
  • Vicente Grau
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6666)

Abstract

Mathematical models of ventricular cardiomyocyte orientation provide a simple description of histo-anatomical arrangements that are important for cardiac mechano-electric behaviour. They can be used to analyse interspecies differences, to explore dynamic remodelling such as during development or disease, and they are key for building realistic computational representations of the heart. This study investigates the suitability of regionally optimised models to represent accurately myocardial structure. Using DT-MRI scans as a reference, we calculate an optimised model by finding the parameters that minimise angular differences, both globally and regionally using a 16-segment topography. Results show angular differences between the optimized model and DT-MRI data of up to 15 degrees, with regional optimization providing a clear improvement in model accuracy (up to 52% error reduction).

Keywords

DT-MRI cardiac myocyte orientation computational modelling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Covell, J.: Tissue Structure and Ventricular Wall Mechanics. Circulation 118, 699–701 (2008)CrossRefGoogle Scholar
  2. 2.
    Ubbink, S.W.J., et al.: Towards model based analysis of cardiac MR tagging data: relation between left ventricular shear strain and myofiber orientation. Med. Imag. Anal. 10, 632–641 (2006)CrossRefGoogle Scholar
  3. 3.
    Streeter, D.D., et al.: Fiber orientation in the canine left ventricle during diastole and systole. Circ. Res. 24, 339–347 (1969)CrossRefGoogle Scholar
  4. 4.
    Toussaint, N., et al.: In vivo human 3D cardiac fibre architecture: Reconstruction using curvilinear interpolation of diffusion tensor images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A., et al. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 418–425. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Scollan, F., et al.: Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am. J. Physiol. 275, 2308–2318 (1998)Google Scholar
  6. 6.
    Potse, M., et al.: A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Trans. Biomed. Eng. 53, 2425–2435 (2006)CrossRefGoogle Scholar
  7. 7.
    Bishop, M.J., et al.: Comparison of rule-based and DTMRI-derived fibre architecture in a whole rat ventricular computational model. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 87–96. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Peyrat, J.M., et al.: A Computational Framework for the Statistical Analysis of Cardiac Diffusion Tensors: Application to a Small Database of Canine Hearts. IEEE Trans. Med. Imaging 26(11), 1500–1514 (2007)CrossRefGoogle Scholar
  9. 9.
    Bishop, M.J., et al.: Development of an anatomically-detailed MRI-derived rabbit ventricular model and assessment of its impact on simulation of electrophysiological function. Am. J. of Physiol. 298, H699–H718 (2010)Google Scholar
  10. 10.
    Cerqueira, et al.: Standardized Myocardial Segmentation and Nomenclature for Tomographic Imaging of the Heart. Circulation 105, 539 (2002)CrossRefGoogle Scholar
  11. 11.
    Plank, G., et al.: Generation of histo-anatomically representative models of the individual heart: tools and application. Phil. Trans. R. Soc. A 367(1896), 2257–2292 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hales, P.W., et al.: Optimizing Accuracy and Precision in High Resolution Diffusion Tensor Imaging of the Ex-Vivo Rat Heart. In: Proc. ISMRM, vol. 18, p. 1629 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ilyas E. Karadag
    • 1
  • Martin Bishop
    • 1
  • Patrick W. Hales
    • 2
  • Jürgen E. Schneider
    • 2
  • Peter Kohl
    • 3
  • David Gavaghan
    • 1
  • Vicente Grau
    • 4
  1. 1.Computational Biology Group, Computing LaboratoryUniversity of OxfordUK
  2. 2.BHF Experimental MR Unit, Department of Cardiovascular MedicineUniversity of OxfordUK
  3. 3.Department of Physiology, Anatomy and GeneticsUniversity of OxfordUK
  4. 4.Department of Engineering Science and Oxford e-Research CentreUniversity of OxfordUK

Personalised recommendations