Advertisement

Recovering Endocardial Walls from 3D TEE

  • Philippe Burlina
  • Ryan Mukherjee
  • Radford Juang
  • Chad Sprouse
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6666)

Abstract

We describe a method for recovering the left intracardiac cavities from 3D Transesophageal Echocardiography (3D TEE). 3D TEE is an important modality for cardiac applications because of its ability to do fast and non-ionizing 3D imaging of the left heart complex. Segmentation based on 3D TEE can be used to characterize pathophysiologies of the valve and myocardium, and as input to patient-specific biomechanical models and preoperative planning tools. The segmentation employed here is based on a dynamic surface evolution. This is performed under a growth inhibition function that incorporates information from several sources including k-means clustering, 3D gradient magnitude, and a morphological structure tensor intended to locate the mitral valve leaflets. We report experiments using intraoperative 3D TEE data, showing good agreement between the segmented structures and ground truth.

Keywords

Mitral Valve Active Contour Structure Tensor Ground Truth Segmentation Initial Seed Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burlina, P., Sprouse, C., DeMenthon, D., Jorstad, A., Juang, R., Contijoch, F., Abraham, T., Yuh, D., McVeigh, E.: Patient-specific modeling and analysis of the mitral valve using 3D-TEE. In: Information Processing in Computer-Assisted Interventions, pp. 135–146 (2010)Google Scholar
  2. 2.
    Sprouse, C., Yuh, D., Abraham, T., Burlina, P.: Computational hemodynamic modeling based on transesophageal echocardiographic imaging. In: Proc. Int. Conf. Engineering in Medicine and Biology Society, vol. 2009, pp. 3649–3652 (2009)Google Scholar
  3. 3.
    Mukherjee, R., Sprouse, C., Abraham, T., Hoffmann, B., McVeigh, E., Yuh, D., Burlina, P.: Myocardial motion computation in 4D ultrasound. In: Proc. Int. Symp. on Biomedical Imaging (2011)Google Scholar
  4. 4.
    Noble, J., Boukerroui, D.: Ultrasound image segmentation: A survey. IEEE Transactions on Medical Imaging 25(8), 987–1010 (2006)CrossRefGoogle Scholar
  5. 5.
    Noble, J.: Ultrasound image segmentation and tissue characterization. Proc. of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 224(2), 307–316 (2010)CrossRefGoogle Scholar
  6. 6.
    Hammoude, A.: Endocardial border identification in two-dimensional echocardiographic images: review of methods. Computerized Medical Imaging and Graphics 22(3), 181–193 (1998)CrossRefGoogle Scholar
  7. 7.
    Mitchell, S., Lelieveldt, B., van der Geest, R., Bosch, H., Reiber, J., Sonka, M.: Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MR images. IEEE Transactions on Medical Imaging 20, 415–423 (2001)CrossRefGoogle Scholar
  8. 8.
    O’Brien, S., Ghita, O., Whelan, P.: Segmenting the left ventricle in 3D using a coupled ASM and a learned non-rigid spatial model. The MIDAS Journal 49 (August 2009)Google Scholar
  9. 9.
    Wijnhout, J., Hendriksen, D., Assen, H.V., der Geest, R.V.: LV challenge LKEB contribution: Fully automated myocardial contour detection. The MIDAS Journal 43 (August 2009)Google Scholar
  10. 10.
    Angelini, E., Homma, S., Pearson, G., Holmes, J., Laine, A.: Segmentation of real-time three-dimensional ultrasound for quantification of ventricular function: a clinical study on right and left ventricles. Ultrasound in Medicine & Biology 31(9), 1143–1158 (2005)CrossRefGoogle Scholar
  11. 11.
    Duan, Q., Angelini, E., Laine, A.: Real-time segmentation by Active Geometric Functions. Computer Methods and Programs in Biomedicine 98(3), 223–230 (2010)CrossRefGoogle Scholar
  12. 12.
    Qu, Y., Chen, Q., Heng, P., Wong, T.: Segmentation of left ventricle via level set method based on enriched speed term. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 435–442. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Chen, Y., Tagare, H., Thiruvenkadam, S., Huang, F., Wilson, D., Gopinath, K., Briggs, R., Geiser, E.: Using prior shapes in geometric active contours in a variational framework. International Journal of Computer Vision 50(3), 315–328 (2002)CrossRefzbMATHGoogle Scholar
  14. 14.
    Han, C., Lin, K., Wee, W., Mintz, R., Porembka, D.: Knowledge-based image analysis for automated boundary extraction of transesophageal echocardiographic left-ventricular images.. IEEE Transactions on Medical Imaging 10(4), 602 (1991)CrossRefGoogle Scholar
  15. 15.
    Wolf, I., Hastenteufel, M., De Simone, R., Vetter, M., Glombitza, G., Mottl-Link, S., Vahl, C., Meinzer, H.: ROPES: A semiautomated segmentation method for accelerated analysis of three-dimensional echocardiographic data. IEEE Transactions on Medical Imaging 21(9), 1091–1104 (2003)CrossRefGoogle Scholar
  16. 16.
    Kucera, D., Martin, R.: Segmentation of sequences of echocardiographic images using a simplified 3D active contour model with region-based external forces. Computerized Medical Imaging and Graphics 21(1), 1–21 (1997)CrossRefGoogle Scholar
  17. 17.
    Cousty, J., Najman, L., Couprie, M., Clment-Guinaudeau, S., Goissen, T., Garot, J.: Segmentation of 4D cardiac MRI: automated method based on spatio-temporal watershed cuts. Image and Vision Computing 28(8), 1229–1243 (2010)CrossRefGoogle Scholar
  18. 18.
    Ben Ayed, I., Punithakumar, K., Li, S., Islam, A., Chong, J.: Left ventricle segmentation via graph cut distribution matching. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 901–909. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Lu, Y., Radau, P., Connelly, K., Dick, A., Wright, G.: Automatic image-driven segmentation of left ventricle in cardiac cine MRI. The MIDAS Journal 49 (August 2009)Google Scholar
  20. 20.
    Lempitsky, V., Verhoek, M., Noble, J.A., Blake, A.: Random forest classification for automatic delineation of myocardium in real-time 3D echocardiography. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 447–456. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics 42(5), 577–685 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Malladi, R., Sethian, J., Vemuri, B.: Shape modeling with front propagation: A level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(2), 158–175 (2002)CrossRefGoogle Scholar
  23. 23.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. International Journal of Computer Vision 22(1), 61–79 (1997)CrossRefzbMATHGoogle Scholar
  24. 24.
    Li, C., Xu, C., Gui, C., Fox, M.D.: Level set evolution without re-initialization: a new variational formulation. In: Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, pp. 430–436. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  25. 25.
    Sato, Y., Westin, C., Bhalerao, A., Nakajima, S., Shiraga, N., Tamura, S.: Tissue classification based on 3d local intensity structures for volume rendering. IEEE Transactions on Visualization and Computer Graphics (6) (2000)Google Scholar
  26. 26.
    Huang, A., Nielson, G., Razdan, A., Farin, G., Baluch, D., Capco, D.: Thin structure segmentation and visualization in three-dimensional biomedical images: a shape-based approach. IEEE Transactions on Visualization and Computer Graphics 12(1), 93–102 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Philippe Burlina
    • 1
    • 2
  • Ryan Mukherjee
    • 1
  • Radford Juang
    • 1
  • Chad Sprouse
    • 1
  1. 1.Applied Physics LaboratoryJohns Hopkins UniversityUSA
  2. 2.Department of Computer ScienceJohns Hopkins UniversityUSA

Personalised recommendations