Advertisement

Interpreting Optical Mapping Recordings in the Ischemic Heart: A Combined Experimental and Computational Investigation

  • Sara Dutta
  • Martin J. Bishop
  • Pras Pathmanathan
  • Peter Lee
  • Peter Kohl
  • T. Alexander Quinn
  • Blanca Rodriguez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6666)

Abstract

The occlusion of a coronary artery results in myocardial ischemia, significantly disturbing the heart’s normal electrical behavior, with potentially lethal consequences, such as sustained arrhythmias. Biologists attempt to shed light on underlying mechanisms with optical voltage mapping, a widely used technique for non-contact visualization of surface electrical activity. However, this method suffers from signal distortion due to fluorescent photon scattering within the biological tissue. The distortion effect may be more pronounced during ischemia, when a gradient of electrophysiological properties exists at the surface of the heart due to diffusion with the surrounding environment. In this paper, a combined experimental and computer simulation investigation into how photon scattering, in the presence of ischemia-induced spatial heterogeneities, distorts optical mapping recordings is performed. Dual excitation wavelength optical mapping experiments are conducted in rabbit hearts. In order to interpret experimental results a computer simulation study is performed using a 3D model of ischemic rabbit cardiac tissue combined with a model of photon diffusion to simulate optical mapping recordings. Results show that the presence of a border zone, in combination with fluorescent photon scattering, distorts the optical signal. Furthermore, changes in the illumination wavelength can alter the relative contribution of the border zone to the emitted signal. The techniques developed in this study may help with interpretation of optical mapping data in electrophysiological investigations of myocardial ischemia.

Keywords

Optical Signal Border Zone Global Ischemia Photon Scattering Epicardial Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Papadakis, M., Sharma, S., Sheppard, M., Panoulas, V., Behr, E.: The magnitude of sudden cardiac death in the young: a death certificate-based review in England and Wales. Europace 11, 1353–1358 (2009)CrossRefGoogle Scholar
  2. 2.
    Carmeliet, E.: Cardiac ionic currents and acute ischemia: from channels to arrhythmias. Physiol. Rev. 79, 917–987 (1999)Google Scholar
  3. 3.
    Fiolet, J., Baartscheer, A., Schumacher, C., Terwelle, H., Krieger, W.: Transmural inhomogeneity of energy metabolism during acute global ischemia in the isolated rat heart: dependence on environmental conditions. J. Mol. Cell. Cardiol. 17, 87–92 (1985)CrossRefGoogle Scholar
  4. 4.
    Schaapherder, A., Schumacher, A., Coronel, R., Fiolet, J.: Transmural inhomogeneity of extracellular [K+] and pH and myocardial energy metabolism in the isolated rat heart during acute global ischemia; dependence on gaseous environment. Basic Res. Cardiol. 85, 33–44 (1990)CrossRefGoogle Scholar
  5. 5.
    Rodriguez, B., Trayanova, N., Noble, D.: Modeling cardiac ischemia. Ann. NY Acad. Sci. 1080, 395–414 (2006)CrossRefGoogle Scholar
  6. 6.
    Tice, B., Rodriguez, B., Eason, J., Trayanova, N.: Mechanistic investigation into the arrhythmogenic role of transmural heterogeneities in regional ischemia phase 1A. Europace 9, 47–58 (2007)Google Scholar
  7. 7.
    Walton, R., Benoist, D., Hyatt, C., Gilbert, S., White, E., Bernus, O.: Dual excitation wavelength epifluorescence imaging of transmural electrophysiological properties in intact hearts. Heart Rhythm 7, 1843–1849 (2010)CrossRefGoogle Scholar
  8. 8.
    Bishop, M., Rodriguez, B., Eason, J., Whiteley, J., Trayanova, N., Gavaghan, D.: Synthesis of voltage-sensitive optical signals: application to panoramic optical mapping. Biophys. J. 90, 2938–2945 (2006)CrossRefGoogle Scholar
  9. 9.
    Hyatt, C., Mironov, S., Wellner, M., Berenfeld, O., Popp, A., Weitz, D., Jalife, J., Pertsov, A.: Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns. Biophys. J. 85, 2673–2683 (2003)CrossRefGoogle Scholar
  10. 10.
    Mahajan, A., Shiferaw, Y., Sato, D., Baher, A., Olcese, R., Xie, L., Yang, M., Chen, P., Restrepo, J., Karma, A., Garfinkel, A., Qu, Z., Weiss, J.: A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates. Biophys. J. 94, 392–410 (2008)CrossRefGoogle Scholar
  11. 11.
    Michailova, A., Suacerman, J., Belik, M., McCulloch, A.: Modeling regulation of cardiac KATP and L-type Ca2+ currents by ATP, ADP, and Mg2+. Biophys. J. 88, 2234–2249 (2005)CrossRefGoogle Scholar
  12. 12.
    Pitt-Francis, J., Pathmanathan, P., Bernabeu, M., Bordas, R., Cooper, J., Fletcher, A., Mirams, G., Murray, P., Osborne, J., Walter, A., Chapman, S., Garny, A., van Leeuwen, I., Maini, P., Rodriguez, B., Waters, S., Whiteley, J., Byrne, H., Gavaghan, D.: Chaste: A test-driven approach to software development for biological modelling. Comput. Phys. Commun. 180, 2452–2471 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sara Dutta
    • 1
  • Martin J. Bishop
    • 1
  • Pras Pathmanathan
    • 1
  • Peter Lee
    • 2
  • Peter Kohl
    • 2
  • T. Alexander Quinn
    • 2
  • Blanca Rodriguez
    • 1
  1. 1.Computing LaboratoryUniversity of OxfordUK
  2. 2.Harefield Heart Science CentreImperial College LondonUK

Personalised recommendations