Anisotropic Mass-Spring Method Accurately Simulates Mitral Valve Closure from Image-Based Models

  • Peter E. Hammer
  • Pedro J. del Nido
  • Robert D. Howe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6666)


Heart valves are functionally complex, making surgical repair difficult. Simulation-based surgical planning could facilitate repair, but current finite element studies are prohibitively slow for rapid, clinically-oriented simulations. An anisotropic, nonlinear mass-spring (M-S) model is used to approximate the behavior of valve leaflets and applied to fully image-based mitral valve models to simulate valve closure for fast applications like intraoperative surgical planning. This approach is used to simulate a technique used in valve repair and to assess the role of chordae in determining the closed configuration of the valve. Direct image-based comparison is used for validation. Results of M-S model simulations showed that it is possible to build fully image-based models of the mitral valve and to rapidly simulate closure with sub-millimeter accuracy. Chordae, which are presently difficult to image, are shown to be strong determinants of closed valve shape.


Mitral valve chordae simulation surgical planning mass-spring 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vahanian, A., Baumgartner, H., Bax, J., Butchart, E., Dion, R., Filippatos, G., Flachskampf, F., Hall, R., Iung, B., Kasprzak, J., Nataf, P., Tornos, P., Torracca, L., Wenink, A.: Grupo de Trabajo sobre el Tratamiento de las Valvulopatias de la Sociedad Europea de Cardiologia: Guidelines on the management of valvular heart disease. Rev. Esp. Cardiol. 60, 1e–50e (2007)Google Scholar
  2. 2.
    Kunzelman, K.S., Einstein, D.R., Cochran, R.P.: Fluid-structure interaction models of the mitral valve: function in normal and pathological states. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 362, 1393–1406 (2007)CrossRefGoogle Scholar
  3. 3.
    Burlina, P., Sprouse, C., DeMenthon, D., Jorstad, A., Juang, R., Contijoch, F., Abraham, T., Yuh, D., McVeigh, E.: Patient-specific modeling and analysis of the mitral valve using 3D-TEE. In: Navab, N., Jannin, P. (eds.) IPCAI 2010. LNCS, vol. 6135, pp. 135–146. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Wenk, J.F., Zhang, Z., Cheng, G., Malhotra, D., Acevedo-Bolton, G., Burger, M., Suzuki, T., Saloner, D.A., Wallace, A.W., Guccione, J.M., Ratcliffe, M.B.: First finite element model of the left ventricle with mitral valve: insights into ischemic mitral regurgitation. Ann. Thorac. Surg. 89, 1546–1553 (2010)CrossRefGoogle Scholar
  5. 5.
    Persson, P.-O., Strang, G.: A Simple Mesh Generator in MATLAB. SIAM Review 46, 329–345 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hammer, P.E., Sacks, M.S., del Nido, P.J., Howe, R.D.: Mass-spring model for simulation of heart valve tissue mechanical behavior. Ann. Biomed. Eng. (2011) (in press)Google Scholar
  7. 7.
    Sacks, M.S., Yoganathan, A.P.: Heart valve function: a biomechanical perspective. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 362, 1369–1391 (2007)CrossRefGoogle Scholar
  8. 8.
    Kunzelman, K.S., Cochran, R.P., Chuong, C., Ring, W.S., Verrier, E.D., Eberhart, R.D.: Finite element analysis of the mitral valve. J. Heart Valve Dis. 2, 326–340 (1993)Google Scholar
  9. 9.
    Cohn, L.H. (ed.): Cardiac Surgery in the Adult. McGraw-Hill, New York (2008)Google Scholar
  10. 10.
    Kunzelman, K.S., Cochran, R.P., Verrier, E.D., Eberhart, R.C.: Anatomic basis for mitral valve modelling. J. Heart Valve Dis. 3, 491–496 (1994)Google Scholar
  11. 11.
    Schneider, R.J., Perrin, D.P., Vasilyev, N.V., Marx, G.R., del Nido, P.J., Howe, R.D.: Mitral annulus segmentation from 3D ultrasound using graph cuts. IEEE Trans. Med. Imaging 29, 1676–1687 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Peter E. Hammer
    • 1
    • 2
    • 3
  • Pedro J. del Nido
    • 1
  • Robert D. Howe
    • 2
  1. 1.Department of Cardiac SurgeryChildren’s Hospital BostonUSA
  2. 2.Harvard School of Engineering and Applied SciencesCambridgeUSA
  3. 3.Department of Biomedical EngineeringTufts UniversityMedfordUSA

Personalised recommendations