Advertisement

Modeling Atrial Fiber Orientation in Patient-Specific Geometries: A Semi-automatic Rule-Based Approach

  • Martin W. Krueger
  • Viktor Schmidt
  • Catalina Tobón
  • Frank M. Weber
  • Cristian Lorenz
  • David U. J. Keller
  • Hans Barschdorf
  • Michael Burdumy
  • Peter Neher
  • Gernot Plank
  • Kawal Rhode
  • Gunnar Seemann
  • Damien Sanchez-Quintana
  • Javier Saiz
  • Reza Razavi
  • Olaf Dössel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6666)

Abstract

Atrial myofiber orientation is complex and has multiple discrete layers and bundles. A novel robust semi-automatic method to incorporate atrial anisotropy and heterogeneities into patient-specific models is introduced. The user needs to provide 22 distinct seed-points from which a network of auxiliary lines is constructed. These are used to define fiber orientation and myocardial bundles. The method was applied to 14 patient-specific volumetric models derived from CT, MRI and photographic data. Initial electrophysiological simulations show a significant influence of anisotropy and heterogeneity on the excitation pattern and P-wave duration (20.7% shortening). Fiber modeling results show good overall correspondence with anatomical data. Minor modeling errors are observed if more than four pulmonary veins exist in the model. The method is an important step towards creating realistic patient-specific atrial models for clinical applications.

Keywords

patient-specific modeling atrial modeling fiber orientation atrial heterogeneity atrial anisotropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Plank, G., Prassl, A.J., Wang, J.I., Seemann, G., Scherr, D., Sanchez-Quintana, D., Calkins, H., Trayanova, N.A.: Atrial fibrosis promotes the transistion of pulmonary vein ectopy into reentrant arrhathmias. In: Heart Rhythm (2008)Google Scholar
  2. 2.
    Vigmond, E.J., Ruckdeschel, R., Trayanova, N.: Reentry in a morphologically realistic atrial model. Cardiovasc Electrophysiol. 12, 1046–1054 (2001)CrossRefGoogle Scholar
  3. 3.
    Zemlin, C., Herzel, H., Ho, S., Panfilov, A.: A realistic and efficient model of excitation propagation in the human atria. In: Computer Simulation and Experimental Assessment of Cardiac Electrophysiology, Futura, pp. 29–34 (2001)Google Scholar
  4. 4.
    Jacquemet, V.: A biophysical model of atrial fibrillation and electrograms: formulation, validation and applications. PhD thesis (2004)Google Scholar
  5. 5.
    Tobón, C., Ruiz, C., Heidenreich, E., Hornero, F., Sáiz, J.: Effect of the ectopic beats location on vulnerability to reentries in a three-dimensional realistic model of human atria. Computers in Cardiology 36, 449–452 (2009)Google Scholar
  6. 6.
    Seemann, G., Höper, C., Sachse, F.B., Dössel, O., Holden, A.V., Zhang, H.: Heterogeneous three-dimensional anatomical and electrophysiological model of human atria. Phil. Trans. Roy. Soc. A 364, 1465–1481 (2006)CrossRefGoogle Scholar
  7. 7.
    Peyrat, J.-M., Sermesant, M., Pennec, X., Delingette, H., Xu, C., McVeigh, E.R., Ayache, N.: A computational framework for the statistical analysis of cardiac diffusion tensors: application to a small database of canine hearts. IEEE Transactions on Medical Imaging 26, 1500–1514 (2007)CrossRefGoogle Scholar
  8. 8.
    Hermosillo, B.D.F.: Semi-automatic enhancement of atrial models to include atrial architecture and patient specific data: For biophysical simulations. Computers in Cardiology 35, 633–636 (2008)Google Scholar
  9. 9.
    Krueger, M.W., Weber, F.M., Seemann, G., Dössel, O.: Semi-automatic segmentation of sinus node, bachmann’s bundle and terminal crest for patient specific atrial models. In: World Congress on Medical Physics and Biomedical Engineering. IFMBE Proceedings, vol. 25/4, pp. 673–676. Springer, Heidelberg (2009)Google Scholar
  10. 10.
    Krueger, M.W., Rhode, K., Weber, F.M., Keller, D.U.J., Caulfield, D., Seemann, G., Knowles, B.R., Razavi, R., Dössel, O.: Patient-specific volumetric atrial models with electrophysiological components: A comparison of simulations and measurements. Biomedizinische Technik / Biomedical Engineering 55(s1), 54–57 (2010)Google Scholar
  11. 11.
    Feng, J., Yue, L., Wang, Z., Nattel, S.: Ionic mechanisms of regional action potential heterogeneity in the canine right atrium. Circ. Res. 83, 541–551 (1998)CrossRefGoogle Scholar
  12. 12.
    Papez, J.W.: Heart musculature of the atria. Am. J. Anatomy 27, 255–286 (1920)CrossRefGoogle Scholar
  13. 13.
    Sanchez-Quintana, D., Anderson, R., Cabrera, J., Climent, V., Martin, R., Farre, J., Ho, S.: The terminal crest: morphological features relevant to electrophysiology. Heart (British Cardiac Society) 88, 406–411 (2002)CrossRefGoogle Scholar
  14. 14.
    Ho, S., Sanchez-Quintana, D.: The importance of atrial structure and fibers. Clinical Anatomy (New York, N.Y.) 22, 52–63 (2009)CrossRefGoogle Scholar
  15. 15.
    Ecabert, O., Peters, J., Schramm, H., Lorenz, C., von Berg, J., Walker, M., Vembar, M., Olszewski, M., Subramanyan, K., Lavi, G., Weese, J.: Automatic model-based segmentation of the heart in ct images. IEEE Transactions on Medical Imaging 27, 1189–1201 (2008)CrossRefGoogle Scholar
  16. 16.
    Weese, J., Peters, J., Meyer, C., Wächter, I., Kneser, R., Lehmann, H., Ecabert, O., Barschdorf, H., Hanna, R., Weber, F.M., Dössel, O., Lorenz, C.: The generation of patient-specific heart models for diagnosis and interventions. In: Camara, O., Pop, M., Rhode, K., Sermesant, M., Smith, N., Young, A. (eds.) STACOM 2010. LNCS, vol. 6364, pp. 25–35. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Platonov, P.G., Ivanov, V., Ho, S.Y., Mitrofanova, L.: Left atrial posterior wall thickness in patients with and without atrial fibrillation: data from 298 consecutive autopsies. Cardiovasc Electrophysiol. 19, 689–692 (2008)CrossRefGoogle Scholar
  18. 18.
    Baerentzen, J.: On the implementation of fast marching methods for 3D lattices. Technical report (2001)Google Scholar
  19. 19.
    Wan, S.Y., Higgins, W.E.: Symmetric region growing. IEEE Transactions on Image Processing 12, 1007–1015 (2003)CrossRefGoogle Scholar
  20. 20.
    Courtemanche, M., Ramirez, R.J., Nattel, S.: Ionic mechanisms underlying human atrial action potential properties: Insights from a mathematical model. Am. J. Physiol. 275, H301–H321 (1998)Google Scholar
  21. 21.
    Seemann, G., Sachse, F.B., Karl, M., Weiss, D.L., Heuveline, V., Dössel, O.: Framework for modular, flexible and efficient solving the cardiac bidomain equation using petsc. Progr. Industr. Math. 15, 363–369 (2010)CrossRefzbMATHGoogle Scholar
  22. 22.
    Harrild, D.M., Henriquez, C.S.: A computer model of normal conduction in the human atria. Circ. Res. 87, 25 (2000)CrossRefGoogle Scholar
  23. 23.
    Sachse, F., Frech, R., Werner, C., Dössel, O.: A model based approach to assignment of myocardial fibre orientation. In: Proceedings of Computers in Cardiology, Hannover, pp. 145–148 (1999)Google Scholar
  24. 24.
    Toussaint, N., Sermesant, M., Stoeck, C.T., Kozerke, S., Batchelor, P.G.: In vivo human 3D cardiac fibre architecture: Reconstruction using curvilinear interpolation of diffusion tensor images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 418–425. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  25. 25.
    Zhao, J., Trew, M.L., Legrice, I.J., Smaill, B.H., Pullan, A.J.: A tissue-specific model of reentry in the right atrial appendage. Cardiovasc Electrophysiol. 20, 675–684 (2009)CrossRefGoogle Scholar
  26. 26.
    Campos, F.O., Wiener, T., Prassl, A.J., Ahammer, H., Plank, G., Weber Dos Santos, R., Sanchez-Quintana, D., Hofer, E.: A 2D-computer model of atrial tissue based on histographs describes the electro-anatomical impact of microstructure on endocardiac potentials and electric near-fields. In: Annual International Conference of the IEEE EMBC Society, vol. 1, pp. 2541–2544 (2010)Google Scholar
  27. 27.
    Marom, E., Herndon, J., Kim, Y., McAdams, H.: Variations in pulmonary venous drainage to the left atrium: implications for radiofrequency ablation. Radiology 230, 824–829 (2004)CrossRefGoogle Scholar
  28. 28.
    Boineau, J.P., Canavan, T.E., Schuessler, R.B., Cain, M.E., Corr, P.B., Cox, J.L.: Demonstration of a widely distributed atrial pacemaker complex in the human heart. Circ. 77, 1221–1237 (1988)CrossRefGoogle Scholar
  29. 29.
    De Ponti, R., Ho, S.Y., Salerno-Uriarte, J.A., Tritto, M., Spadacini, G.: Electroanatomic analysis of sinus impulse propagation in normal human atria. Journal of Cardiovascular Electrophysiology 13, 1–10 (2002)CrossRefGoogle Scholar
  30. 30.
    Wang, L., Zhang, H., Wong, K.C.L., Liu, H., Shi, P.: Noninvasive imaging of electrophysiological substrates in post myocardial infarction. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 732–740. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  31. 31.
    Hansson, A., Holm, M., Blomstrom, P., Johansson, R., Luhrs, C., Brandt, J., Olsson, S.: Right atrial free wall conduction velocity and degree of anisotropy in patients with stable sinus rhythm studied during open heart surgery. Eur. Heart. J. 19, 293–300 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Martin W. Krueger
    • 1
  • Viktor Schmidt
    • 1
  • Catalina Tobón
    • 2
  • Frank M. Weber
    • 1
  • Cristian Lorenz
    • 3
  • David U. J. Keller
    • 1
  • Hans Barschdorf
    • 3
  • Michael Burdumy
    • 1
  • Peter Neher
    • 1
    • 3
  • Gernot Plank
    • 4
  • Kawal Rhode
    • 5
  • Gunnar Seemann
    • 1
  • Damien Sanchez-Quintana
    • 6
  • Javier Saiz
    • 2
  • Reza Razavi
    • 5
  • Olaf Dössel
    • 1
  1. 1.Institute of Biomedical EngineeringKarlsruhe Institute of Technology (KIT)Germany
  2. 2.Grupo Bioelectrónica- I3BHUniversidad Politécnica de ValenciaSpain
  3. 3.Philips Research HamburgGermany
  4. 4.Institute of BiophysicsMedical University of GrazAustria
  5. 5.Division of Imaging Sciences and Biomedical EngineeringKing’s College LondonUnited Kingdom
  6. 6.Department of AnatomyUniversidad de ExtramaduraBadajozSpain

Personalised recommendations