Cardiac MRI Intervention and Diagnosis via Deformable Collaborative Tracking

  • Yan Zhou
  • Nikolaos V. Tsekos
  • Ioannis T. Pavlidis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6666)


The high contrast and lack of ionizing radiation, renders Magnetic Resonance Imaging (MRI) a suitable modality for continuous intra-operative imaging. Tracking the motion of key locations in cardiac MRI is of paramount importance in control and guidance in emerging robot-assisted interventions. Tracking can also be used to assess myocardial wall motion for diagnostic purposes. This article presents an expanded collaborative tracking algorithm to facilitate both interventions and diagnosis in MRI. Specifically, the network of trackers not only follows anatomical landmarks on the beating heart but also computes its evolving deformable surface on a specific plane. Experimental investigations with both CINE and real-time MRI demonstrate that the collaborative tracker network achieves robust real-time performance over long periods, outperforming the MIL tracker. Pilot experimental results also demonstrate that the evolution of the network’s deformation mesh can be used for blood volume estimation and computation of the ejection fraction - both of great diagnostic value.


Cardiovascular Magnetic Resonance Survivor Group Cardiac Magnetic Resonance Image Magnetic Resonance Image Sequence Deformation Mesh 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Saikus, C.E., Lederman, R.J.: Interventional cardiovascular magnetic resonance imaging: A new opportunity for image-guided interventions. JACC Cardiovascular Imaging 2, 1321–1331 (2009)CrossRefGoogle Scholar
  2. 2.
    Jolesz, F.A.: Future perspectives for intraoperative MRI. Neurosurgery Clinics of North America 16(1), 201–213 (2005)CrossRefGoogle Scholar
  3. 3.
    Tsekos, N.V., Khanicheh, A., Christoforou, E., Mavroidis, C.: Magnetic resonance-compatible robotic and mechatronics systems for image-guided interventions and rehabilitation: A review study. Annual Review of Biomedical Engineering 9, 351–387 (2007)CrossRefGoogle Scholar
  4. 4.
    McVeigh, E.R., Guttman, M.A., Lederman, R.J., Li, M., Kocaturk, O., Hunt, T., Kozlov, S., Horvath, K.A.: Real-time interactive MRI-guided cardiac surgery: Aortic valve replacement using a direct apical approach. Magnetic Resonance Medicine 56(5), 958–964 (2006)CrossRefGoogle Scholar
  5. 5.
    Dowsey, A.W., Keegan, J., Lerotic, M., Thom, S., Firmin, D., Yang, G.: Motion-compensated MR valve imaging with COMB tag tracking and super-resolution enhancement. Medical Image Analysis 11(5), 478–491 (2007)CrossRefGoogle Scholar
  6. 6.
    Spottiswoode, B.S., Zhong, X., Lorenz, C.H., Mayosi, B.M., Meintjes, E.M., Epstein, F.H.: 3D myocardial tissue tracking with slice followed cine DENSE MRI. Journal of Magnetic Resonance Imaging 27(5), 1019–1027 (2008)CrossRefGoogle Scholar
  7. 7.
    Fradkin, M., Ciofolo, C., Mory, B., Hautvast, G., Breeuwer, M.: Comprehensive Segmentation of Cine Cardiac MR Images. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 178–185. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Yuen, S.G., Kesner, S.B., Vasilyev, N.V., del Nido, P.J., Howe, R.D.: 3D Ultrasound-Guided Motion Compensation System for Beating Heart Mitral Valve Repair. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 711–719. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Zhou, Y., Yeniaras, E., Tsiamyrtzis, P., Tsekos, N., Pavlidis, I.: Collaborative Tracking for MRI-Guided Robotic Intervention on the Beating Heart. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6363, pp. 351–358. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Babenko, B., Yang, M.H., Belongie, S.: Visual tracking with online multiple instance learning. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, California, pp. 983–990 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yan Zhou
    • 1
  • Nikolaos V. Tsekos
    • 1
  • Ioannis T. Pavlidis
    • 1
  1. 1.Department of Computer ScienceUniversity of HoustonHoustonUSA

Personalised recommendations