Morphological Classification: Application to Cardiac MRI of Tetralogy of Fallot

  • Dong Hye Ye
  • Harold Litt
  • Christos Davatzikos
  • Kilian M. Pohl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6666)


This paper presents an image-based classification method, and applies it to classification of cardiac MRI scans of individuals with Tetralogy of Fallot (TOF). Clinicians frequently diagnose cardiac disease by measuring the ventricular volumes from cardiac MRI scans. Interrater variability is a common issue with these measurements. We address this issue by proposing a fully automatic approach for detecting structural changes in the heart. We first extract morphological features of each subject by registering cardiac MRI scans to a template. We then reduce the size of the features via a nonlinear manifold learning technique. These low dimensional features are then fed into nonlinear support vector machine classifier identifying if the subject of the scan is effected by the disease. We apply our approach to MRI scans of 12 normal controls and 22 TOF patients. Experimental result demonstrates that the method can correctly determine whether subject is normal control or TOF with 91% accuracy.


Tetralogy of Fallot Morphological classification Manifold learning Computational anatomy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Helbing, W.A., Roos, A.: Clinical application of cardiac magnetic resonance imaging after repair of tetralogy of Fallot. Pediatric Cardiology 21(1), 70–79 (2000)CrossRefGoogle Scholar
  2. 2.
    Sirovich, L., Kirby, M.: Low-dimensional procedure for the characterization of human faces. Journal of the Optical Society of America A(4), 519–524 (1987)CrossRefGoogle Scholar
  3. 3.
    Roweis, S., Saul, L.: Nonlinear Dimensionality Reduction b Locally Linear Embedding. Science 290, 2323–2326 (2000)CrossRefGoogle Scholar
  4. 4.
    Tenenbaum, J.B., Silva, V., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290(5500), 2319–2323 (2000)CrossRefGoogle Scholar
  5. 5.
    Davatzikos, C., Genc, A., Xu, D., Resnick, S.M.: Voxel-based morphometry using the ravens maps: methods and validation using simulated longitudinal atrophy. Neuroimage 14(6), 1361–1369 (2001)CrossRefGoogle Scholar
  6. 6.
    Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: efficient non-parametric image registration. Neuroimage 45(supp.1), S61–S72 (2009)CrossRefGoogle Scholar
  7. 7.
    Hamm, J., Ye, D.H., Verma, R., Davatzikos, C.: Gram: A framework for geodesic registration on anatomical manifolds. Med. Image Anal. 14(5), 633–642 (2010)CrossRefGoogle Scholar
  8. 8.
    Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2, 121–167 (1998)CrossRefGoogle Scholar
  9. 9.
    Keerthi, S., Lin, C.: Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Computation 15(7), 1667–1689 (2003)CrossRefzbMATHGoogle Scholar
  10. 10.
    Heiberg, E., Wigstrom, L., Carlsson, M., Bolger, A.: Time Resolved Tree-dimensional Automated Segmentation of the Left Ventricle. Proceedings of IEEE Computers in Cardiology 32, 599–602 (2005)Google Scholar
  11. 11.
    Ashburner, J., Friston, K.J.: Voxel-based morphometry–the methods. Neuroimage 11(6 Pt 1), 805–821 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Dong Hye Ye
    • 1
  • Harold Litt
    • 2
  • Christos Davatzikos
    • 1
  • Kilian M. Pohl
    • 1
  1. 1.SBIAUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Cardiovascular Imaging SectionUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations