Advertisement

4D Cardiac Reconstruction Using High Resolution CT Images

  • Mingchen Gao
  • Junzhou Huang
  • Shaoting Zhang
  • Zhen Qian
  • Szilard Voros
  • Dimitris Metaxas
  • Leon Axel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6666)

Abstract

Recent developments on the 320 multi-detector CT technologies have made the volumetric acquisition of 4D high resolution cardiac images in a single heart beat possible. In this paper, we present a framework that uses these data to reconstruct the 4D motion of the endocardial surface of the left ventricle (LV) for a full cardiac cycle. This reconstruction framework captures the motion of the full 3D surfaces of the complex anatomical features, such as the papillary muscles and the ventricular trabeculae, for the first time, which allows us to quantitatively investigate their possible functional significance in health and disease.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, T., Metaxas, D., Axel, L.: 3D cardiac anatomy reconstruction using high resolution CT data. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 411–418. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Lorenz, C., von Berg, J.: A comprehensive shape model of the heart. Medical Image Analysis 10(4), 657–670 (2006)CrossRefGoogle Scholar
  3. 3.
    Mcinerney, T., Terzopoulos, D.: A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis. Computerized Medical Imaging and Graphics 19, 69–83 (1995)CrossRefGoogle Scholar
  4. 4.
    Montagnat, J., Delingette, H.: 4D deformable models with temporal constraints: application to 4D cardiac image segmentation. Medical Image Analysis 9(1), 87–100 (2005)CrossRefGoogle Scholar
  5. 5.
    Shen, D., Davatzikos, C.: Adaptive-focus statistical shape model for segmentation of 3D MR structures. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 206–215. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Shen, T., Li, H., Qian, Z., Huang, X.: Active volume models for 3d medical image segmentation. In: CVPR, pp. 707–714 (2009)Google Scholar
  7. 7.
    von Berg, J., Lorenz, C.: Multi-surface cardiac modelling, segmentation, and tracking. In: Frangi, A.F., Radeva, P., Santos, A., Hernandez, M. (eds.) FIMH 2005. LNCS, vol. 3504, pp. 1–11. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Wang, X., Chen, T., Zhang, S., Metaxas, D., Axel, L.: LV motion and strain computation from tMRI based on meshless deformable models. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 636–644. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Zhang, S., Wang, X., Metaxas, D.N., Chen, T., Axel, L.: LV surface reconstruction from sparse TMRI using laplacian surface deformation and optimization. In: ISBI, pp. 698–701 (2009)Google Scholar
  10. 10.
    Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Four-chamber heart modeling and automatic segmentation for 3D cardiac CT volumes using marginal space learning and steerable features. TMI 27(11), 1668–1681 (2008)Google Scholar
  11. 11.
    Zhu, S., Lee, T., Yuille, A.: Region competition: unifying snakes, region growing, energy/Bayes/MDL for multi-band image segmentation. In: ICCV, pp. 416–423 (June 1995)Google Scholar
  12. 12.
    Zhuang, X., Rhode, K., Razavi, R., Hawkes, D., Ourselin, S.: A registration-based propagation framework for automatic whole heart segmentation of cardiac MRI. TMI 29(9), 1612–1625 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mingchen Gao
    • 1
  • Junzhou Huang
    • 1
  • Shaoting Zhang
    • 1
  • Zhen Qian
    • 2
  • Szilard Voros
    • 2
  • Dimitris Metaxas
    • 1
  • Leon Axel
    • 3
  1. 1.CBIM CenterRutgers UniversityPiscatawayUSA
  2. 2.2 Piedmont Heart InstituteAtlantaUSA
  3. 3.New York UniversityNew YorkUSA

Personalised recommendations