Skip to main content

Towards Patient Specific Catheter Selection: Computation of Aortic Geometry Based on Fused MRI Data

  • Conference paper
Book cover Functional Imaging and Modeling of the Heart (FIMH 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6666))

Abstract

In coronary angiography, a catheter’s tip has to be directed through the aorta towards the ostium – the region where the coronary arteries arise. Due to the anatomical variation in different humans, there is no common catheter which can be used for all patients. Thus, in a trial and error procedure cardiologists find a catheter that fits to the patient’s anatomy. To replace this time consuming approach by providing a computer aided planning tool to be used prior to the intervention is the focus of our work. First of all, it is necessary for such a system to derive geometrical parameters for the patient’s aorta as well as for the different available catheters. Based thereon, the best fitting catheter can be selected. In this paper, we discuss the first step: the computation of geometrical parameters from the patient’s image data. Due to the setting defined by our clinical partner, two MRI data sets are acquired and should be used for the computation. This requires a specific image processing pipeline which we present here and which has to our knowledge not been proposed so far. Furthermore, we show first results obtained for real clinical data sets and discuss the subsequent steps for the development of the catheter selection tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sarkar, K., Sharma, S., Kini, A.: Catheter Selection for Coronary Angiography and Intervention in Anomalous Right Coronary Arteries. Journal of Interventional Cardiology 22, 234–239 (2009)

    Article  Google Scholar 

  2. Kimbiris, D., Iskandrian, A., Segal, B., Bemis, C.: Anomalous Aortic Origin of Coronary Arteries. Circulation 58(4), 606–615 (1978)

    Article  Google Scholar 

  3. Brinkman, A., Baker, P., Newman, W., Vigorito, R., Friedman, M.: Variability of human coronary artery geometry: An angiographic study of the left anterior descending arteries of 30 autopsy hearts. Annals of Biomedical Engineering 22, 34–44 (1994), 10.1007/BF02368220

    Article  Google Scholar 

  4. Myler, R., Boucher, R., Cumberland, D., Stertzer, S.: Guiding catheter selection for right coronary artery angioplasty. Catheterization and Cardiovascular Diagnosis 19 (1990)

    Google Scholar 

  5. Schneider, P.: Endovascular Skills: Guidewire and Catheter Skills for Endovascular Surgery, 2nd edn. Marcel Dekkar Inc., New York (2003)

    Book  Google Scholar 

  6. Rueckert, D., Burger, P., Forbat, S., Mohiaddin, R., Yang, G.: Automatic tracking of the aorta in cardiovascular MR images using deformable models. IEEE Transactions on Medical Imaging 16(5), 581–590 (1997)

    Article  Google Scholar 

  7. Kovács, T., Cattin, P., Alkadhi, H., Wildermuth, S., Székely, G.: Automatic Segmentation of the Vessel Lumen from 3D CTA Images of Aortic Dissection. In: Brauer, W., Handels, H., Ehrhardt, J., Horsch, A., Meinzer, H.P., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2006. Informatik aktuell, pp. 161–165. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Kovács, T., Cattin, P.C., Alkadhi, H., Wildermuth, S., Székely, G.: Automatic segmentation of the aortic dissection membrane from 3D CTA images. In: Yang, G.-Z., Jiang, T.-Z., Shen, D., Gu, L., Yang, J. (eds.) MIAR 2006. LNCS, vol. 4091, pp. 317–324. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Wörz, S., Rohr, K.: Segmentation and Quantification of Human Vessels Using a 3-D Cylindrical Intensity Model. IEEE Transactions on Image Processing 16(8), 1994–2004 (2007)

    Article  MathSciNet  Google Scholar 

  10. Wörz, S., von Tengg-Kobligk, H., Henninger, V., Rengier, F., Schumacher, H., Böckler, D., Kauczor, H.U., Rohr, K.: 3-D Quantification of the Aortic Arch Morphology in 3-D CTA Data for Endovascular Aortic Repair. IEEE Transactions on Biomedical Engineering 57(10), 2359–2368 (2010)

    Article  Google Scholar 

  11. Saur, S., Kühnel, C., Boskamp, T., Székely, G.: Automatic Ascending Aorta Detection in CTA Datasets (2008)

    Google Scholar 

  12. Lorenz, C., Renisch, S., Schlathoelter, T., Buelow, T.: Simultaneous segmentation and tree reconstruction of the coronary arteries in MSCT images. SPIE, vol. 5031, pp. 167–177 (2003)

    Google Scholar 

  13. Hennemuth, A., Boskamp, T., Fritz, D., Kühnel, C., Bock, S., Rinck, D., Scheuering, M., Peitgen, H.O.: One-click coronary tree segmentation in CT angiographic images. International Congress Series 1281, 317–321 (2005); CARS 2005: Computer Assisted Radiology and Surgery

    Article  Google Scholar 

  14. Fallavollita, P., Cheriet, F.: Towards an Automatic Coronary Artery Segmentation Algorithm. In: 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2006 (30, 2006)

    Google Scholar 

  15. Wang, Y., Liatsis, P.: A Fully Automated Framework for Segmentation and Stenosis Quantification of Coronary Arteries in 3D CTA Imaging. In: 2009 Second International Conference on Developments in eSystems Engineering (DESE), pp. 136–140 (2009)

    Google Scholar 

  16. Shoujun, Z., Jian, Y., Yongtian, W., Wufan, C.: Automatic segmentation of coronary angiograms based on fuzzy inferring and probabilistic tracking. BioMedical Engineering OnLine 9(1), 40 (2010)

    Article  Google Scholar 

  17. Ballard, D.: Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13(2), 111–122 (1981)

    Article  MATH  Google Scholar 

  18. Sethian, J.: Fast Marching Methods. SIAM Rev. 41, 199–235 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Frangi, A., Niessen, W., Hoogeveen, R., van Walsum, T., Viergever, M.: Quantitation of Vessel Morphology from 3D MRA. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 358–367. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  20. Homann, H.: Implementation of a 3D thinning algorithm. Oxford University, Wolfson Medical Vision Lab. (2007)

    Google Scholar 

  21. Rahman, S.U., Wesarg, S., Völker, W.: Patient Specific Optimal Catheter Selection for Right Coronary Artery, SPIE Medical Imaging (to appear, 2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Flehmann, E., Rahman, S.u., Wesarg, S., Voelker, W. (2011). Towards Patient Specific Catheter Selection: Computation of Aortic Geometry Based on Fused MRI Data. In: Metaxas, D.N., Axel, L. (eds) Functional Imaging and Modeling of the Heart. FIMH 2011. Lecture Notes in Computer Science, vol 6666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21028-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21028-0_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21027-3

  • Online ISBN: 978-3-642-21028-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics