Advertisement

Driving Dynamic Cardiac Model Adaptation with MR-Tagging Displacement Information

  • Christopher Casta
  • Patrick Clarysse
  • Jérôme Pousin
  • Joël Schaerer
  • Pierre Croisille
  • Yue-Min Zhu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6666)

Abstract

The dynamic deformable elastic template (DET) model has been previously introduced for the retrieval of personalized anatomical and functional models of the heart from dynamic cardiac image sequences. Dynamic DET model is a finite element deformable model, for which the minimum of the energy must satisfy a simplified equation of Dynamics. In this paper, we extend its scope to the retrieval of cardiac deformation within tagged magnetic imaging, using precomputed displacement fields as prior data to drive the model. Evaluation conducted on simulated sequences shows the performance of the model to track heart motion as a function of the quantity and quality of prior displacement information.

Keywords

Motion Information Simulated Sequence Prescribe Displacement Electromechanical Model Phase Magnetic Resonance Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Axel, L., Chen, T., Manglik, T.: Dense myocardium deformation estimation for 2D tagged MRI. In: Frangi, A.F., Radeva, P., Santos, A., Hernandez, M. (eds.) FIMH 2005. LNCS, vol. 3504, pp. 446–456. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Osman, N.F., McVeigh, E.R., Prince, J.L.: Imaging heart motion using harmonic phase MRI. IEEE Trans. Med. Imaging 19(3), 186–202 (2000)CrossRefGoogle Scholar
  3. 3.
    Arts, T., Prinzen, F.W., Delhaas, T., Milles, J.R., Rossi, A.C., Clarysse, P.: Mapping Displacement and Deformation of the Heart With Local Sine-Wave Modeling. IEEE Trans. Med. Imaging 29(5), 1114–1123 (2010)CrossRefGoogle Scholar
  4. 4.
    Sermesant, M., Delingette, H., Ayache, N.: An Electromechanical Model of the Heart for Image Analysis and Simulation. IEEE Trans. Med. Imaging 25(5), 612–625 (2006)CrossRefGoogle Scholar
  5. 5.
    Billet, F., Sermesant, M., Delingette, H., Ayache, N.: Cardiac Motion Recovery and Boundary Conditions Estimation by Coupling an Electromechanical Model and Cine-MRI Data. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 376–385. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Schaerer, J., Casta, C., Clarysse, P., Rouchdy, Y., Pousin, J.: A Dynamic Elastic Model for Segmentation and Tracking of the Heart in MR Image Sequences. Medical Image Analysis 14(6), 738–749 (2010)CrossRefGoogle Scholar
  7. 7.
    Casta, C., Clarysse, P., Pousin, J., Schaerer, J., Croisille, P., Zhu, Y.-M.: Incorporating Low-Level Constraints for the Retrieval of Personalised Heart Models from Dynamic MRI. In: Camara, O., Pop, M., Rhode, K., Sermesant, M., Smith, N., Young, A. (eds.) STACOM 2010. LNCS, vol. 6364, pp. 174–183. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Clarysse, P., Basset, C., Khouas, L., Croisille, P., Friboulet, D., Odet, C., Magnin, I.E.: 2D spatial and temporal displacement field fitting from cardiac MR tagging. Medical Image Analysis 3, 253–268 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Christopher Casta
    • 1
  • Patrick Clarysse
    • 1
  • Jérôme Pousin
    • 2
  • Joël Schaerer
    • 1
  • Pierre Croisille
    • 1
  • Yue-Min Zhu
    • 1
  1. 1.CREATIS, CNRS UMR5220, INSERM U1044INSA-Lyon; Université de LyonFrance
  2. 2.ICJ, CNRS UMR5208INSA-Lyon; Université de LyonVilleurbanneFrance

Personalised recommendations