Advertisement

An Ultrasound-Driven Kinematic Model of the Heart That Enforces Local Incompressibility

  • Dan Lin
  • Jeffrey W. Holmes
  • John A. Hossack
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6666)

Abstract

Local incompressibility can be used to improve fitting and analysis of ultrasound-based displacement data using a heart model. An analytic mathematical model incorporating inflation, torsion, and axial extension was generalized for the left ventricle. Short-axis and long-axis images of mouse left ventricles were acquired using high frequency B-mode ultrasound and myocardial displacements were determined using speckle tracking. Deformation gradient components in the circumferential and longitudinal directions were fitted using linear regressions. The slopes of these lines were then used to predict motion in the radial directions. The optimized kinematic model accurately predicted the motion of mouse left ventricle during filling with normalized root mean square error of 4.4±1.2%.

Keywords

Motion Estimate Radial Motion Normalize Root Mean Square Error Cylindrical Model Leave Ventric 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Roger, V.L., Go, A.S., Lloyd-Jones, D.M., Adams, R.J., Berry, J.D., Brown, T.M., Carnethon, M.R., Dai, S., de Simone, G., Ford, E.S., Fox, C.S., Fullerton, H.J., Gillespie, C., Greenlund, K.J., Hailpern, S.M., Heit, J.A., Ho, P.M., Howard, V.J., Kissela, B.M., Kittner, S.J., Lackland, D.T., Lichtman, J.H., Lisabeth, L.D., Makuc, D.M., Marcus, G.M., Marelli, A., Matchar, D.B., McDermott, M.M., Meigs, J.B., Moy, C.S., Mozaffarian, D., Mussolino, M.E., Nichol, G., Paynter, N.P., Rosamond, W.D., Sorlie, P.D., Stafford, R.S., Turan, T.N., Turner, M.B., Wong, N.D., Wylie-Rosett, J.: Heart Disease and Stroke Statistics 2011 Update: A Report From the American Heart Association. Circulation 123, e18–e209 (2011)CrossRefGoogle Scholar
  2. 2.
    Taylor, C.A., Figueroa, C.A.: Patient-specific Modeling of Cardiovascular Mechanics. Annu. Rev. BioMed. Eng. 11, 109–134 (2009)CrossRefGoogle Scholar
  3. 3.
    Mihalef, V., Ionasec, R., Wang, Y., Zheng, Y., Georgescu, B., Comaniciu, D.: Patient-specific Modeling of Left Heart Anatomy, Dynamics and Hemodynamics from High Resolution 4D CT. In: IEEE ISBI, pp. 504–507 (2010)Google Scholar
  4. 4.
    Niederer, S., Rhode, K., Razavi, R., Smith, N.: The Importance of Model Parameters and Boundary Conditions in Whole Organ Models of Cardiac Contraction. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 348–356. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Humphrey, J.D., Yin, F.C.: Constitutive Relations and Finite Deformations of Passive Cardiac Tissue II: Stress Analysis in the Left Ventricle. Cir. Res. 65, 805–817 (1989)CrossRefGoogle Scholar
  6. 6.
    Guccione, J.M., McCulloch, A.D., Waldman, L.K.: Passive Material Properties of Intact Ventricular Myocardium Determined From a Cylindrical Model. J. Biomech. Eng. 113, 42–55 (1991)CrossRefGoogle Scholar
  7. 7.
    Arts, T., Hunter, W.C., Douglas, A.D., Muijtjens, A.M., Reneman, R.S.: Description of the Deformation of the Left Ventricle by a Kinematic Model. J. Biomechanics 25, 1119–1127 (1992)CrossRefGoogle Scholar
  8. 8.
    Costa, K.D., Hunter, P.J., Rogers, J.M., Guccione, J.M., Waldman, L.K., McCulloch, A.D.: A Three-Dimesional Finte Element Method for Large Elastic Deformations of Ventricular Myocardium: I–Cylindrical and Spherical Polar Coordinates. J. Biomech. Eng. 118, 452–463 (1996)CrossRefGoogle Scholar
  9. 9.
    Garson, C.D., Li, B., Acton, S.T., Hossack, J.A.: Guiding Automated Left Ventricular Chamber Segmentation in Cardiac Imaging Using the Concept of Conserved Myocardial Volume. Comp. Med. Imag. Graph 32, 321–330 (2008)CrossRefGoogle Scholar
  10. 10.
    Zhu, Y., Papademetris, X., Sinusas, A.J., Duncan, J.S.: A Coupled Deformable Model for Tracking Myocardial Borders from Real-time Echocardiography Using an Incompressibility Constraint. Med. Image Analysis 14, 429–448 (2010)CrossRefGoogle Scholar
  11. 11.
    Bistoquet, A., Oshinski, J., Skrinjar, O.: Myocardial Deformation Recovery from Cine MRI Using a Nearly Incompressible Biventricular Model. Med. Image Analysis 12, 69–85 (2008)CrossRefGoogle Scholar
  12. 12.
    Mansi, T., Pennec, X., Sermesant, M.: iLogDemons: A Demons-Based Registration Algorithm for Tracking Incompressible Elastic Biological Tissues. Int. J. Comput. Vis. 92, 92–111 (2010)CrossRefGoogle Scholar
  13. 13.
    Wang, Y., Georgescu, B., Comaniciu, D., Houle, S.: Learning-Based 3D Myocardial Motion Flow Estimation Using High Frame Rate Volumetric Ultrasound Data. In: IEEE ISBI, pp. 1097–1100 (2010)Google Scholar
  14. 14.
    Lediju, M.A., Pihl, M.J., Hsu, S.J., Dahl, J.J., Gallippi, C.M., Trahey, G.E.: A Motion-Based Approach to Abdominal Clutter Reduction. IEEE Trans. Ultrason. Ferro. Freq. Cont. 56, 2437–2449 (2009)CrossRefGoogle Scholar
  15. 15.
    Gallippi, C.M., Trahey, G.E.: Adaptive Clutter Filtering Via Blind Source Separation for Two-Dimensional Ultrasonic Blood Velocity Measurement. Ultrason. Imag. 24, 193–214 (2002)CrossRefGoogle Scholar
  16. 16.
    Adkins, J.E.: Some General Results in the Theory of Large Elastic Deformation. Proc. R. Soc. 231, 75–90 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Spencer, A.J.M.: Continuum Mechanics. Longman Press, London (1980)zbMATHGoogle Scholar
  18. 18.
    Aliev, M.K., Santos, P.D., Hoerter, J.A., Soboll, S., Tikhonov, A.N., Saks, V.A.: Water Content and Its Intracellular Distribution in Intact and Saline Perfused Rat Hearts Revisited. Cardio. Res. 53, 48–58 (2002)CrossRefGoogle Scholar
  19. 19.
    Vinnakota, K.C., Bassingthwaighte, J.B.: Myocardial Density and Composition: A Basis for Calculating Intracellular Metabolite Concentrations. Am. J. Physiol. Heart Circ. Phyiol. 286, H1742–H1749 (2004)CrossRefGoogle Scholar
  20. 20.
    Judd, R.M., Levy, B.I.: Effects of Barium-induced Cardiac Contraction on Large- and Small-Vessel Intramyocardial Blood Volume. Circulation 68, 217–225 (1991)CrossRefGoogle Scholar
  21. 21.
    Li, Y., Garson, C.D., Xu, Y., Beyers, R.J., Epstein, F.H., French, B.A., Hossack, J.A.: Quantification and MRI Validation of Regional Contractile Dysfunction in Mice Post Myocardial Infarction Using High Resolution Ultrasound. Ultrasound in Med. & Biol. 33, 894–904 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Dan Lin
    • 1
  • Jeffrey W. Holmes
    • 1
  • John A. Hossack
    • 1
  1. 1.Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations