Advertisement

Multi-frame Radial Basis Functions to Combine Shape and Speckle Tracking for Cardiac Deformation Analysis in Echocardiography

  • Colin B. Compas
  • Ben A. Lin
  • Smita Sampath
  • Congxian Jia
  • Qifeng Wei
  • Albert J. Sinusas
  • James S. Duncan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6666)

Abstract

Quantitative analysis of left ventricular motion can provide valuable information about cardiac function. Echocardiography is a non-invasive, readily available method that can generate real time images of heart motion. Two methods that have been used to track motion in echocardiography are shape tracking and speckle tracking. Shape tracking provides reliable tracking information on the boundaries of the myocardium, while speckle tracking is reliable across the myocardium. The complementary nature of these methods means that combining them can lead to a better overall understanding of ventricular deformation. The methods presented here use radial basis functions to combine displacements generated from the two methods using information from multiple sequential frames. Ultrasound data was acquired for six canines at baseline and also, for three of these, after myocardial infarction induced by surgical coronary occlusion. Mean segmental radial strain values showed significant decreases in the infarct regions. Comparison to tagged MRI strain values for two of the animals showed good correlation.

Keywords

Radial Basis Function Feature Point Radial Strain Speckle Tracking Myocardial Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Paragios, N.: A level set approach for shape-driven segmentation and tracking of the left ventricle. IEEE Transactions on Medical Imaging 22(6), 773–776 (2003)CrossRefGoogle Scholar
  2. 2.
    Yan, P., Lin, N., Sinusas, A.J., Duncan, J.S.: A boundary element-based approach to analysis of LV deformation. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 778–785. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Lubinski, M., Emelianov, S., O’Donnell, M.: Speckle tracking methods for ultrasonic elasticity imaging using short-time correlation. IEEE Trans. Sonics 46(1), 82–96 (1999)Google Scholar
  4. 4.
    Yu, W., Yan, P., Sinusas, A.J., Thiele, K., Duncan, J.S.: Towards pointwise motion tracking in echocardiographic image sequences–comparing the reliability of different features for speckle tracking. Medical Image Analysis 10(4), 495–508 (2006)CrossRefGoogle Scholar
  5. 5.
    Schaback, R.: Creating surfaces from scattered data using radial basis functions. Mathematical Methods for Curves and Surfaces, 477–496 (1995)Google Scholar
  6. 6.
    Morse, B., Yoo, T., Rheingans, P., Chen, D., Subramanian, K.: Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions. In: Proceedings International Conference on Shape Modeling and Applications, pp. 89–98 (2001)Google Scholar
  7. 7.
    Rohde, G.K., Aldroubi, A., Dawant, B.M.: The adaptive bases algorithm for intensity-based nonrigid image registration. IEEE Transactions on Medical Imaging 22(11), 1470–1479 (2003)CrossRefGoogle Scholar
  8. 8.
    Duan, Q., Herz, S., Ingrassia, C., Costa, K., Holmes, J., Laine, A., Angelini, E., Gerard, O., Homma, S.: Dynamic cardiac information from optical flow using four dimensional ultrasound. IEEE Engineering in Medicine and Biology Society 4, 4465–4468 (2005)Google Scholar
  9. 9.
    Bistoquet, A., Oshinski, J., Skrinjar, O.: Myocardial deformation recovery from cine MRI using a nearly incompressible biventricular model. Medical Image Analysis 12(1), 69–85 (2008)CrossRefGoogle Scholar
  10. 10.
    Lin, N., Papademetris, X., Sinusas, A.J., Duncan, J.S.: Analysis of left ventricular motion using a general robust point matching algorithm. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 556–563. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Kaluzynski, K., Chen, X., Emelianov, S.Y., Skovoroda, R., O’Donnell, M.: Strain rate imaging using two-dimensional speckle tracking. IEEE Trans. Sonics 48(4), 1111–1123 (2001)Google Scholar
  12. 12.
    Buhmann, M.: Radial Basis Functions: Theory and Implemetations. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  13. 13.
    Young, A., Hitoshi, I., Chang, C.N., Axel, L.: Two-dimensional left ventricular deformation during systole using magnetic resonance imaging with spatial modulation of magnetization. Circulation 89(2), 740–752 (1994)CrossRefGoogle Scholar
  14. 14.
    Osman, N.F., Prince, J.L.: Visualizing myocardial function using HARP MRI. Physics in Medicine and Biology 45(6), 1665–1682 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Colin B. Compas
    • 1
  • Ben A. Lin
    • 2
  • Smita Sampath
    • 1
    • 3
  • Congxian Jia
    • 5
  • Qifeng Wei
    • 6
  • Albert J. Sinusas
    • 2
    • 3
  • James S. Duncan
    • 1
    • 3
    • 4
  1. 1.Department of Biomedical EngineeringYale UniversityNew HavenUSA
  2. 2.Department of Internal MedicineYale UniversityNew HavenUSA
  3. 3.Department of Diagnostic RadiologyYale UniversityNew HavenUSA
  4. 4.Department of Electrical EngineeringYale UniversityNew HavenUSA
  5. 5.Department of Biomedical EngineeringUniversity of MichiganAnn ArborUSA
  6. 6.Philips Medical SystemsAndoverUSA

Personalised recommendations