On the Estimation of Transmural Myocardial Shear by Means of MRI Tagging

  • Alessandro C. Rossi
  • Theo Arts
  • Tammo Delhaas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6666)


The reliability of non-invasive myocardial shear measurements based on MRI tagging is evaluated in relation to the influence of possible edge effects close to myocardial borders. Automatic cardiac motion tracking is performed with SinMod, a method based on sinusoidal wave modeling. Shear results are evaluated for simulated images with a known imposed motion field, as well as for real short-axis acquisitions from 10 healthy volunteers. To evaluate accuracy and precision in vivo, automatic results are compared with manual tracings. Results show that estimation of circumferential-radial shear is feasible in vivo, where edge effects close to myocardial borders play a minor role as compared with those found in synthetic images. In healthy subjects, circumferential-radial shear and rotation of the myocardium appear negatively correlated.


MRI tagging left ventricle myocardial mechanics transmural gradient shear SinMod Harp 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Russel, I.K., Gotte, M.J., Kuijer, J.P., Marcus, J.T.: Regional assessment of left ventricular torsion by CMR tagging. J. Cardiovasc. Magn. Reson. 10, 26 (2008)CrossRefGoogle Scholar
  2. 2.
    Van Der Toorn, A., Barenbrug, P., Snoep, G., Van Der Veen, F.H., Delhaas, T., Prinzen, F.W., Maessen, J., Arts, T.: Transmural gradients of cardiac myofiber shortening in aortic valve stenosis patients using MRI tagging. Am. J. Physiol. Heart Circ. Physiol. 283, H1609–H1615 (2002)CrossRefGoogle Scholar
  3. 3.
    Bovendeerd, P.H., Kroon, W., Delhaas, T.: Determinants of left ventricular shear strain. Am. J. Physiol. Heart Circ. Physiol. 297, H1058–H1068 (2009)CrossRefGoogle Scholar
  4. 4.
    Arts, T., Prinzen, F., Delhaas, T., Milles, J., Rossi, A.C., Clarysse, P.: Mapping Displacement and Deformation of the Heart With Local Sine-Wave Modeling. IEEE Trans. Med. Imaging 29, 1114–1123 (2010)CrossRefGoogle Scholar
  5. 5.
    Axel, L., Dougherty, L.: MR imaging of motion with spatial modulation of magnetization. Radiology 171, 841–845 (1989)CrossRefGoogle Scholar
  6. 6.
    Malvern, L.E.: Introduction to the mechanics of a continuous medium. Prentice-Hall, Englewood Cliffs (1969)zbMATHGoogle Scholar
  7. 7.
    Osman, N.F., McVeigh, E.R., Prince, J.L.: Imaging heart motion using harmonic phase MRI. IEEE Trans. Med. Imaging 19, 186–202 (2000)CrossRefGoogle Scholar
  8. 8.
    Bland, J.M., Altman, D.G.: Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 327, 307–310 (1986)CrossRefGoogle Scholar
  9. 9.
    Zhong, X., Spottiswoode, B.S., Meyer, C.H., Kramer, C.M., Epstein, F.H.: Imaging three-dimensional myocardial mechanics using navigator-gated volumetric spiral cine DENSE MRI. Magn. Reson. Med. 64, 1089–1097 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alessandro C. Rossi
    • 1
  • Theo Arts
    • 1
  • Tammo Delhaas
    • 1
  1. 1.Department of Biomedical EngineeringMaastricht UniversityMaastrichtThe Netherlands

Personalised recommendations