Advertisement

Simulation of Diffusion Anisotropy in DTI for Virtual Cardiac Fiber Structure

  • Lihui Wang
  • Yue-Min Zhu
  • Hongying Li
  • Wanyu Liu
  • Isabelle E. Magnin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6666)

Abstract

Diffusion anisotropy is the most fundamental and important parameter in the description of cardiac fibers using diffusion tensor magnetic resonance imaging (DTI), by reflecting the microstructure variation of the fiber. It is, however still not clear how the diffusion anisotropy is influenced by different contiguous structures (collagen, cardiac myocyte, etc.). In this paper, a virtual cardiac fiber structure is modeled, and diffusion weighted imaging (DWI) and DTI are simulated by the Monte Carlo method at various scales. The influences of the water content ratio in the cytoplasm and the extracellular space and the membrane permeability upon diffusion anisotropy are investigated. The simulation results show that the diffusion anisotropy increases with the increase of the ratio of water content between the intracellular cytoplasm and the extracellular medium. We show also that the anisotropy decreases with the increase of myocyte membrane permeability.

Keywords

DTI cardiac myocyte diffusion anisotropy myocardial fiber Monte Carlo simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Le Bihan, D.: Looking into the functional architecture of the brain with diffusion MRI. International Congress Series. Elsevier, Amsterdam (2006)Google Scholar
  2. 2.
    Kingsley, P.B.: Introduction to diffusion tensor imaging mathematics: Part I. Tensors, rotations, and eigenvectors. Concepts in Magnetic Resonance Part A 28, 101–122 (2006)CrossRefGoogle Scholar
  3. 3.
    Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Apparent diffusion coefficients from high angular resolution diffusion imaging: Estimation and applications. Magnet. Reson. Med. 56, 395–410 (2006)CrossRefGoogle Scholar
  4. 4.
    Özarslan, E., Koay, C.G., Basser, P.J.: Remarks on q-space MR propagator in partially restricted, axially-symmetric, and isotropic environments. Magnetic Resonance Imaging 27, 834–844 (2009)CrossRefGoogle Scholar
  5. 5.
    Tuch, D.S.: Q-ball imaging. Magnet. Reson. Med. 52, 1358–1372 (2004)CrossRefGoogle Scholar
  6. 6.
    Le Bihan, D., Poupon, C., Amadon, A., Lethimonnier, F.: Artifacts and pitfalls in diffusion MRI. Journal of Magnetic Resonance Imaging 24, 478–488 (2006)CrossRefGoogle Scholar
  7. 7.
    Assaf, Y., Freidlin, R.Z., Rohde, G.K., Basser, P.J.: New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magnetic Resonance in Medicine 52, 965–978 (2004)CrossRefGoogle Scholar
  8. 8.
    Severs, N.J.: The cardiac muscle cell. Bioessays 22, 188–199 (2000)CrossRefGoogle Scholar
  9. 9.
    Duh, A., Mohori, A., Stepinik, J.: Computer simulation of the spin-echo spatial distribution in the case of restricted self-diffusion. Journal of Magnetic Resonance 148, 257–266 (2001)CrossRefGoogle Scholar
  10. 10.
    Cai, C., Chen, Z., Cai, S., Zhong, J.: Propagator formalism and computer simulation of restricted diffusion behaviors of inter-molecular multiple-quantum coherences. Physica B: Condensed Matter 366, 127–137 (2005)CrossRefGoogle Scholar
  11. 11.
    Fieremans, E., De Deene, Y., Delputte, S., Özdemir, M.S., D’Asseler, Y., Vlassenbroeck, J., et al.: Simulation and experimental verification of the diffusion in an anisotropic fiber phantom. Journal of Magnetic Resonance 190, 189–199 (2008)CrossRefGoogle Scholar
  12. 12.
    Avram, L., Özarslan, E., Assaf, Y., Bar-Shir, A., Cohen, Y., Basser, P.J.: Three-dimensional water diffusion in impermeable cylindrical tubes: theory versus experiments. NMR in Biomedicine 2, 888–898 (2008)CrossRefGoogle Scholar
  13. 13.
    Heidi, J.B., Timothy, E.J.B.: Diffusion MRI, 1st edn., p. 8. Elsevier, Amsterdam (2009)Google Scholar
  14. 14.
    Kingsley, P.B.: Introduction to diffusion tensor imaging mathematics: Part II. Anisotropy, diffusion-weighting factors, and gradient encoding schemes. Concepts in Magnetic Resonance Part A 28, 123–154 (2006)CrossRefGoogle Scholar
  15. 15.
    Kingsley, P.B.: Introduction to diffusion tensor imaging mathematics: Part III. Tensor calculation, noise, simulations, and optimization. Concepts in Magnetic Resonance Part A 28, 155–179 (2006)CrossRefGoogle Scholar
  16. 16.
    Skeletal, M., Reid, R.H.J., Lucia, L.B.: Histology for Pathologists, 3rd edn., p. 201. Williams & Wilkins, Baltimore (2009)Google Scholar
  17. 17.
    Bihan, D.L.: The ’wet mind’: water and functional neuroimaging. Physics in medicine and biology 52, R57–R90 (2007)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Iaizzo, P.A.: Handbook of Cardiac Anatomy, Physiology, and Devices, 2nd edn. (2009)Google Scholar
  19. 19.
    Friedrich, M.G.: Myocardial edema—a new clinical entity? Nature Reviews Cardiology (2010)Google Scholar
  20. 20.
    Egan, J.R., Butler, T.L., Au, C.G., Tan, Y.M., North, K.N., Winlaw, D.S.: Myocardial water handling and the role of aquaporins. Biochimica et Biophysica Acta (BBA)-Biomembranes 1758, 1043–1152 (2006)CrossRefGoogle Scholar
  21. 21.
    Ogura, T., Imanishi, S., Shibamoto, T.: Osmometric and water-transporting properties of guinea pig cardiac myocytes. The Japanese Journal of Physiology 52, 333–342 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Lihui Wang
    • 1
    • 2
  • Yue-Min Zhu
    • 2
  • Hongying Li
    • 2
  • Wanyu Liu
    • 1
    • 2
  • Isabelle E. Magnin
    • 2
  1. 1.Harbin Institute of TechnologyHarbinChina
  2. 2.CREATIS, CNRS UMR5220, Inserm U1044INSA Lyon, University of Lyon1VilleurbanneFrance

Personalised recommendations