Advertisement

Automatic Segmentation of Cardiac CTs - Personalized Atrial Models Augmented with Electrophysiological Structures

  • Peter Neher
  • Hans Barschdorf
  • Sebastian Dries
  • Frank M. Weber
  • Martin W. Krueger
  • Olaf Dössel
  • Cristian Lorenz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6666)

Abstract

Electrophysiological simulations of the atria could improve diagnosis and treatment of cardiac arrhythmia, like atrial fibrillation or flutter. For this purpose, a precise segmentation of both atria is needed. However, the atrial epicardium and the electrophysiological structures needed for electrophysiological simulations are barely or not at all detectable in CT-images. Therefore, a model based segmentation of only the atrial endocardium was developed as a landmark generator to facilitate the registration of a finite wall thickness model of the right and left atrial myocardium. It further incorporates atlas information about tissue structures relevant for simulation purposes like Bachmann’s bundle, terminal crest, sinus node and the pectinate muscles. The correct model based segmentation of the atrial endocardium was achieved with a mean vertex to surface error of 0.53 mm for the left and 0.18 mm for the right atrium respectively. The atlas based myocardium segmentation yields physiologically correct results well suited for electrophysiological simulations.

Keywords

automatic segmentation computed tomography cardiac atrium atrial fibrillation electrophysiological structures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jørgensen, H.S., et al.: The copenhagen stroke study (1996), http://stroke.ahajournals.org/ (accessed May 14, 2010)
  2. 2.
    Weber, F.M., Schilling, C., Straub, D., Gurm, S., Seemann, G., Lorenz, C., Dössel, O.: Extracting Clinically Relevant Circular Mapping and Coronary Sinus Catheter Potentials from Atrial Simulations. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 30–38. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Jacquemet, V., et al.: Modeling atrial arrhythmias: Impact on clinical diagnosis and therapies. IEEE Reviews in Biomedical Engineering 1 (2008)Google Scholar
  4. 4.
    Lorenz, C., et al.: A comprehensive shape model of the heart. Medical Image Analysis 10, 657–670 (2006)CrossRefGoogle Scholar
  5. 5.
    Ecabert, O.: Automatic model-based segmentation of the heart in ct images. IEEE Transactions on Medical Imaging 27, 1189–1201 (2008)CrossRefGoogle Scholar
  6. 6.
    Krueger, M.W., et al.: Semi-automatic segmentation of sinus node, bachmann’s bundle and terminal crest for patient specific atrial models. IFMBE Proceedings 25, 673–676 (2009)CrossRefGoogle Scholar
  7. 7.
    Hall, B., et al.: Variation in left atrial transmural wall thickness at sites commonly targeted for ablation of atrial fbrillation. Journal of Interventional Cardiac Electrophysiology 17, 127–132 (2006)CrossRefGoogle Scholar
  8. 8.
    Stehning, C., et al.: Black-blood restricted field of view sequence for pre-ablation imaging of the atria. Proc. Intl. Soc. Mag. Reson. Med. 18, 1409 (2010)Google Scholar
  9. 9.
    Ho, S.Y., et al.: Atrial structure and fibres: morphologic bases of atrial conduction. Cardiovascular Research 54, 325–336 (2002)CrossRefGoogle Scholar
  10. 10.
    Saremi, F., et al.: Cardiac conduction system: anatomic landmarks relevant to interventional electrophysiologic techniques demonstrated with 64-detector ct. Radiographics 27, 1539–1565 (2007)CrossRefGoogle Scholar
  11. 11.
    Si, H.: TetGen A Quality Tetrahedral Mesh Generator and Three-Dimensional Delaunay Triangulator. Weierstrass Institute for Applied Analysis and Stochastics. Version 1.4 edn. (2006)Google Scholar
  12. 12.
    Weese, J., Kaus, M.R., Lorenz, C., Lobregt, S., Truyen, R., Pekar, V.: Shape constrained deformable models for 3D medical image segmentation. In: Insana, M.F., Leahy, R.M. (eds.) IPMI 2001. LNCS, vol. 2082, pp. 380–387. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Marom, E.M., et al.: Variations in pulmonary venous drainage to the left atrium: implications for radiofrequency ablation. Radiology 230, 824–829 (2004)CrossRefGoogle Scholar
  14. 14.
    Bookstein, F.L.: Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Transaction on Pattern Analysis and Machine Intelligence 2, 567–585 (1989)CrossRefzbMATHGoogle Scholar
  15. 15.
    Coffey, J., et al.: Specific absorbed fractions for photon sources uniformly distributed in the heart chambers and heart wall of a heterogeneous phantom. Journal of Nuclear Medicine 22, 65–71 (1981)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Peter Neher
    • 1
    • 2
  • Hans Barschdorf
    • 2
  • Sebastian Dries
    • 2
  • Frank M. Weber
    • 1
  • Martin W. Krueger
    • 1
  • Olaf Dössel
    • 1
  • Cristian Lorenz
    • 2
  1. 1.Institute of Biomedical EngineeringKarlsruhe Institute of Technology (KIT)Germany
  2. 2.Philips Research HamburgGermany

Personalised recommendations