Anode Make and Break Excitation Mechanisms and Strength-Interval Curves: Bidomain Simulations in 3D Rotational Anisotropy

  • Piero Colli-Franzone
  • Luca F. Pavarino
  • Simone Scacchi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6666)


The shape of anodal strength-interval curves and make and break excitation mechanisms are investigated in a 2D anisotropic Bidomain model, with different membrane models and action potential durations, and in a 3D rotational anisotropic Bidomain model, with axisymmetric or orthotropic conductivity properties. The results have shown that the LRd model with a long intrinsic APD exhibits a systolic dip threshold lower than the diastolic threshold, in agreement with previous experimental data. The spatial and temporal analysis of the excitation patterns indicates a novel anode make excitation mechanism with delayed propagation within the transition from break to make mechanisms.


Action Potential Duration Excitation Pattern Stimulation Amplitude Break Excitation Bidomain Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balay, S., et al.: PETSc home page (2001),
  2. 2.
    Arevalo, H., Rodriguez, B., Trayanova, N.A.: Arrhythmogenesis in the heart: multiscale modeling of the effects of defibrillation shocks and the role of electrophysiological heterogeneity. Chaos 17(1), 015103 (2007)CrossRefzbMATHGoogle Scholar
  3. 3.
    Caldwell, B.J., et al.: Three distinct directions of intramural activation reveal nonuniform side-to-side electric coupling of ventricular myocytes. Circ. Arrhythmia Electrophysiol. 2, 433–440 (2009)CrossRefGoogle Scholar
  4. 4.
    Cerbai, E., Barbieri, M., Mugelli, A.: Characterization of the hyperpolarization-activated current, I f in ventricular myocytes isolated from hypertensive rats. J. Physiol. 481(3), 585–591 (1994)CrossRefGoogle Scholar
  5. 5.
    Cheng, D.K., Tung, L., Sobie, E.A.: Nonuniform responses of transmembrane potential during electric field stimulation of single cardiac cells. Am. J. Physiol. Heart Circ. Physiol. 362, H351–H362 (1999)Google Scholar
  6. 6.
    Colli Franzone, P., Guerri, L., Taccardi, B.: Modeling ventricular excitation: axial and orthotropic anisotropy effects on wavefronts and potentials. Math. Biosci. 188, 191–205 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Colli Franzone, P., Pavarino, L.F., Taccardi, B.: Effects of transmural electrical heterogeneities and electrotonic interactions on the dispersion of cardiac repolarization and action potential duration: a simulation study. Math. Biosci. 204(1), 132–165 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    DeBruin, K.A., Krassowska, W.: Electroporation and shock-induced transmembrane potential in a cardiac fiber during defibrillation strength shocks. Ann. Biomed. Eng. 26, 584–596 (1998)CrossRefGoogle Scholar
  9. 9.
    Dekker, E.: Direct current make and break thresholds for pacemaker electrodes on the canine ventricle. Circ. Res. 27, 811–823 (1970)CrossRefGoogle Scholar
  10. 10.
    DiFrancesco, D., Ferroni, A., Mazzanti, M., Tromba, C.: Properties of the hyperpolarizing-activated current (if) in cells from rabbit sini-atrial node. J. Physiol. 377, 61–88 (1986)CrossRefGoogle Scholar
  11. 11.
    Efimov, I.R., Gray, R.A., Roth, B.J.: Virtual electrodes and deexcitation: new insights into fibrillation induction and defibrillation. J. Cardiovasc Electrophysiol. 11, 339–353 (2000)CrossRefGoogle Scholar
  12. 12.
    Faber, G.M., Rudy, Y.: Action potential and contractility changes in [Na+](i) overloaded cardiac myocytes: A simulation study. Biophys. J. 78(5), 2392–2404 (2000)CrossRefGoogle Scholar
  13. 13.
    Henriquez, C.S., Ying, W.: The Bidomain model of cardiac tissue: from microscale to macroscale. In: Efimov, I.R., et al. (eds.) Cardiac Bioelectric Therapy, ch. 5.1, pp. 401–421. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Janks, D.L., Roth, B.J.: The bidomain theory of pacing. In: Efimov, I.R., et al. (eds.) Cardiac Bioelectric Therapy, ch. 2.1, pp. 63–83. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Luo, C., Rudy, Y.: A model of the ventricular cardiac action potential: depolarization, repolarization, and their interaction. Circ. Res. 68(6), 1501–1526 (1991)CrossRefGoogle Scholar
  16. 16.
    Mehra, R., Furmann, S.: Comparison of cathodal, anodal and bipolar strength - interval curves with temporary and permanent pacing electrodes. Br. Heart J. 41, 468–476 (1979)CrossRefGoogle Scholar
  17. 17.
    Pennacchio, M., Savaré, G., Colli Franzone, P.: Multiscale modeling for the bioelectric activity of the heart. SIAM J. Math. Anal. 37(4), 1333–1370 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Plank, G., et al.: Evaluation intramural virtual electrodes in the myocardial wedge preparation: simulations of experimental conditions. Biophys. J. 94, 1904–1915 (2008)CrossRefGoogle Scholar
  19. 19.
    Ranjan, R., et al.: Mechanism of anode break stimulation in the heart. Biophys. J. 74, 1850–1863 (1998)CrossRefGoogle Scholar
  20. 20.
    Ranjan, R., Tomaselli, G.F., Marban, E.: A novel mechanism of anode-break stimulation predicted by bidomain modeling. Circ. Res. 84, 153–156 (1999)CrossRefGoogle Scholar
  21. 21.
    Roth, B.J., Wikswo Jr., J.P.: Electrical stimulation of cardiac tissue: a bidomain model with active membrane properties. IEEE Trans. Biomed. Eng. 41(3), 232–240 (1994)CrossRefGoogle Scholar
  22. 22.
    Roth, B.J.: Strength-Interval curve for cardiac tissue predicted using the bidomain model. J. Cardiovasc. Electrophysiol. 7, 722–737 (1996)CrossRefGoogle Scholar
  23. 23.
    Roth, B.J., Chen, J.: Mechanism of anode break excitation in the heart: the relative influence of membrane and electrotonic factors. J. Biol. Systems 7(4), 541–552 (1999)CrossRefGoogle Scholar
  24. 24.
    Sambelashvili, A., Nikolski, V.P., Efimov, I.R.: Virtual electrode theory explains pacing threshold increase caused by cardiac tissue damage. Am. J. Physiol Heart Circ. Physiol. 2194, H2183–H2194 (2004)CrossRefGoogle Scholar
  25. 25.
    Scacchi, S., et al.: Computing cardiac recovery maps from electrograms and monophasic action potentials under heterogeneous and ischemic conditions. Math. Mod. Meth. Appl. Sci. 20(7), 1089–1127 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Sidorov, V.Y., et al.: Examination of stimulation mechanism and strength-interval curve in cardiac tissue. Am. J. Physiol Heart Circ. Physiol. 2615, H2602–H2615 (2005)CrossRefGoogle Scholar
  27. 27.
    Skouibine, K.B., Trayanova, N.A., Moore, P.: Anode/cathode make and break phenomena in a model of defibrillation. IEEE Trans. Biomed. Eng. 46(7), 769–777 (1999)CrossRefGoogle Scholar
  28. 28.
    Wikswo Jr., J.P., Roth, B.J.: Virtual electrode theory of pacing. In: Efimov, I.R., et al. (eds.) Cardiac Bioelectric Therapy, ch. 4.3, pp. 283–330. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Piero Colli-Franzone
    • 1
  • Luca F. Pavarino
    • 2
  • Simone Scacchi
    • 2
  1. 1.Dipartimento di MatematicaUniversità di Pavia and IMATI-CNR, Istituto di Matematica Applicata e Tecnologie InformatichePaviaItaly
  2. 2.Dipartimento di MatematicaUniversità di MilanoMilanoItaly

Personalised recommendations