Harmony Search Algorithms in Structural Engineering

  • M. P. Saka
  • I. Aydogdu
  • O. Hasancebi
  • Z. W. Geem
Part of the Studies in Computational Intelligence book series (SCI, volume 359)


Harmony search method is widely applied in structural design optimization since its emergence. These applications have shown that harmony search algorithm is robust, effective and reliable optimization method. Within recent years several enhancements are suggested to improve the performance of the algorithm. Among these Mahdavi has presented two versions of harmony search methods. He named these as improved harmony search method and global best harmony search method. Saka and Hasancebi (2009) have suggested adaptive harmony search where the harmony search parameters are adjusted automatically during design iterations. Coelho has proposed improved harmony search method. He suggested an expression for one of the parameters of standard harmony search method. In this chapter, the optimum design problem of steel space frames is formulated according to the provisions of LRFD-AISC (Load and Resistance Factor Design-American Institute of Steel Corporation). The weight of the steel frame is taken as the objective function to be minimized. Seven different structural optimization algorithms are developed each of which are based on one of the above mentioned versions of harmony search method. Three real size steel frames are designed using each of these algorithms. The optimum designs obtained by these techniques are compared and performance of each version is evaluated.


Structural Optimization Metaheuristic Techniques Harmony Search Algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Load and Resistance Factor Design, Structural Members Specifications Codes, 3 edn.,vol.1 American Institute of Steel Construction (2001)Google Scholar
  2. 2.
    Lee, K.S., Geem, Z.W.: A new structural optimization method based on the harmony search algorithm. Computers and Structures 82, 781–798 (2004)CrossRefGoogle Scholar
  3. 3.
    Lee, K.S., Geem, Z.W.: A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice. Computer Methods in Applied Mechanics and Engineering 194, 3902–3933 (2005)MATHCrossRefGoogle Scholar
  4. 4.
    Geem, Z.W., Lee, K.S., Tseng, C.-L.: Harmony Search for Structural Design. In: Proceedings of 2005 Genetic and Evolutionary Computation Conference (GECCO-2005), Washington, DC, USA, June 25–29 pp. 651–652 (2005)Google Scholar
  5. 5.
    Geem, Z.W. (ed.): Music-Inspired Harmony Search Algorithm; Theory and Applications, Studies in Computational Intelligence. SCI, vol. 191. Springer, Heidelberg (2009)Google Scholar
  6. 6.
    Geem, Z.W. (ed.): Harmony Search Algorithm for Structural Design Optimization. SCI, vol. 219. Springer, Heidelberg (2009)Google Scholar
  7. 7.
    Kochenberger, G.A., Glover, F.: Handbook of Meta-Heuristics. Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  8. 8.
    Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys 35(30), 268–308 (2003)CrossRefGoogle Scholar
  9. 9.
    Gonzales, T.F.: Handbook of Approximation Algorithms and Metaheuristics. CRC Press, Chapman & Hall (2007)CrossRefGoogle Scholar
  10. 10.
    Yang, X.-S.: Nature Inspired Metaheuristic Algorithms. Luniver Press (2008)Google Scholar
  11. 11.
    Luke, S.: Essentials of Metaheuristic. Lulu Press (2011)Google Scholar
  12. 12.
    Erdal, F., Saka, M.P.: Optimum design of grillage systems using harmony search algorithm. In: Proceedings of 8th International Conference on Computational Structures Technology (CST 2006), Las Palmas de Gran Canaria, Spain September 12–15 (2006)Google Scholar
  13. 13.
    Saka, M.P.: Optimum design of steel sway frames to BS5950 using harmony search algorithm. In: Proceedings of The Eleventh International Conference on Civil, Structural and Environmental Engineering Computing (CC-2007) Civil-Comp Press, St. Julians (2007)Google Scholar
  14. 14.
    Saka, M.P.: Optimum geometry design of geodesic domes using harmony search algorithm. An International Journal, Advances in Structural Engineering 10(6), 595–606 (2007)CrossRefGoogle Scholar
  15. 15.
    Carbas, S., Saka, M.P.: Optimum design of single layer network domes using harmony search method. Asian Journal of Civil Engineering, 10(1), 97–112 (2009)Google Scholar
  16. 16.
    Hasançebi, O., Çarbaş, S., Doğan, E., Erdal, F., Saka, M.P.: Performance evaluation of metaheuristic techniques in the optimum design of real size pin jointed structures. Computers and Structures 87, 284–302 (2009)CrossRefGoogle Scholar
  17. 17.
    Saka, M.P.: Optimum design of steel sway frames to BS5950 using harmony search algorithm. Journal of Constructional Steel Research 65, 36–43 (2009)CrossRefGoogle Scholar
  18. 18.
    Saka, M.P., Erdal, F.: Harmony search based algorithm for the optimum design of grillage systems to LRFD-AISC. Structural and Multidisciplinary Optimization 38, 25–41 (2009)CrossRefGoogle Scholar
  19. 19.
    Hasançebi, O., Çarbaş, S., Doğan, E., Erdal, F., Saka, M.P.: Comparison of non-deterministic search techniques in the optimum design of real size steel frames. An International Journal, Computers and Structures 88(17-18), 1033–1048 (2010)CrossRefGoogle Scholar
  20. 20.
    Mahdavi, M., Fesanghary, M., Damangir, E.: An improved harmony search algorithm for solving optimization problems. Applied Mathematics and Computation 188, 1567–1579 (2007)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Omran, M.G.H., Mahdavi, M.: Global-Best harmony search. Applied Mathematics and Computation 198, 643–656 (2008)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Saka, M.P., Hasancebi, O.: Adaptive Harmony Search Algorithm for Design Code Optimization of Steel structures. In: Geem, Z.W. (ed.) Harmony Search Algorithms for Structural Design Optimization. SCI, vol. 239, pp. 79–120. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Hasançebi, O., Erdal, F., Saka, M.P.: An Adaptive Harmony Search Method for Structural Optimization. Journal of Structural Engineering, ASCE 136(4), 419–431 (2010)CrossRefGoogle Scholar
  24. 24.
    Coelho, L.D.S., Bernett, D.L.D.A.: An improvement harmony search algorithm for synchronization of discrete-time chaotic systems. Chaos, Solutions and Fractals 41, 2526–2532 (2009)MATHCrossRefGoogle Scholar
  25. 25.
    Ad Hoc Committee on Serviceability: Structural Serviceability: A critical Appraisal and Research needs. Journal of Structural Engineering, ASCE 112(12), 2646–2664 (1986)Google Scholar
  26. 26.
    Ellingwood, B.: Serviceability guidelines for steel structures. Engineering Journal, AISC 26,1st Quarter 1–8 (1989)Google Scholar
  27. 27.
    Chen, W.F., Kim, S.-E.: LRFD Steel Design Using Advanced Analysis. CRC Press, Boca Raton (1997)Google Scholar
  28. 28.
    ASCE 7-05. Minimum Design Loads for Building and Other Structures (2005)Google Scholar
  29. 29.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: FromNatural to Artificial System. Oxford University Press, U.K (1999)Google Scholar
  30. 30.
    Kennedy, J., Eberhart, R., Shi, Y.: Swarm Intelligence. Morgan KaufmanPublishers, San Francisco (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • M. P. Saka
    • 1
  • I. Aydogdu
    • 1
  • O. Hasancebi
    • 2
  • Z. W. Geem
    • 3
  1. 1.Department of Engineering SciencesMiddle East Technical UniversityAnkaraTurkey
  2. 2.Department of Civil EngineeringMiddle East Technical UniversityAnkaraTurkey
  3. 3.Information Technology ProgramiGlobal UniversityAnnandaleUSA

Personalised recommendations