Advertisement

A New Approach to Network Optimization Using Chaos-Genetic Algorithm

  • Golnar Gharooni-fard
  • Fahime Moein-darbari
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 359)

Abstract

Genetic Algorithms (GAs) have been widely used to solve network optimization problems with varying degrees of success. Part of the problem with GAs lies in the premature convergence when dealing with large-scale and complex problems; Caught in local optima, the algorithm might fail to reach the global optimum even after a large number of iterations. In order to overcome the problems with traditional GAs, a method is proposed to integrate Chaos Optimization Algorithms (COAs) with GA to fully exploit their respective searching advantages. The basic idea of COA is to transform the problem variables, by way of a map, from the solution space to a chaos space and to perform a search that benefits from the randomness, orderliness and ergodicity of chaos variable. In this chapter, we will first discuss network optimization in general, and then focus on how chaos theory can be incorporated into the GA in order to enhance its optimization capacities. We will also examine the efficiency of the proposed Chaos-Genetic algorithm in the context of two different types of network optimization problems, Grid scheduling and Network-on-Chip mapping problem.

Keywords

network optimization Genetic Algorithm Chaos theory Grid scheduling Network-on-Chip mapping problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, Heidelberg (2008)CrossRefzbMATHGoogle Scholar
  2. 2.
    Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms, Algorithms and Combinatorics, 4th edn. Springer, Heidelberg (2008)Google Scholar
  3. 3.
    Weise, T.: Global Optimization – Theory and Application, 2nd edn. Thomas Weise (2009)Google Scholar
  4. 4.
    Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2008)Google Scholar
  5. 5.
    Yang, X.-S.: Engineering Optimization: An Introduction with Metaheuristic Applications. Wiley, Chichester (2010)CrossRefGoogle Scholar
  6. 6.
    Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science 220(4598), 671–680 (1983)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  8. 8.
    Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence. Morgan Kaufmann, New York (2001)Google Scholar
  9. 9.
    Dorigo, M.: Optimization, Learning and Natural Algorithms (Phd Thesis), Politecnico di Milano, Italy (1992)Google Scholar
  10. 10.
    Glover, F., Laguna, M.: Tabu Search. USA Norwell. Kluwer Academic Publishers, Dordrecht (1997)CrossRefzbMATHGoogle Scholar
  11. 11.
    Blum, C., Roli, A.: Metaheuristics in Combinatorial Optimization: Overview and conceptual comparison. ACM Computing Surveys 35(3), 268–308 (2003)CrossRefGoogle Scholar
  12. 12.
    Ribeiro, C., Hansen, P.: Essays and Surveys in Metaheuristics. Kluwer Academic Publishers, Norwell (2002)zbMATHGoogle Scholar
  13. 13.
    Melanie, M.: An Introduction to Genetic Algorithm, A Bradford book. A Bradford book MIT press, London (1998)Google Scholar
  14. 14.
    Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms, 2nd edn. Wiley-Interscience Publication, Hoboken (1998)zbMATHGoogle Scholar
  15. 15.
    Stavroulakis, P.: Chaos Application in Telecommunications. CRC Press Taylor and Francis group, New York (2006)Google Scholar
  16. 16.
    Strogatz, S.: Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. In: Perseus Books (1994)Google Scholar
  17. 17.
    Tavazoei, M.S., Haeri, M.: Comparison of Different One-Dimensional Maps as Chaotic Search in Chaos Optimization Algorithms. Applied Mathematics and Computation 187(2), 1076–1085 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    He, Y.Y., Zhou, J.Z., Xiang, X.Q.: Comparison of different chaotic maps in particle swarm optimization algorithm for long term cascaded hydroelectric system scheduling. Chaos Solitons Fractals 42(5), 3169–3176 (2009)CrossRefzbMATHGoogle Scholar
  19. 19.
    Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, U.K (2002)zbMATHGoogle Scholar
  20. 20.
    Erramili, A., Singh, R.P., Pruthi, P.: Modeling Packet Traffic with Chaotic Maps. Royal Institute of Technology, Sweden (1994), ISRN KTH/IT/R-94/18-SEGoogle Scholar
  21. 21.
    He, D., He, C., Jiang, L.G., Zhu, H.W., Hu, G.R.: A chaotic map with infinite collapses. In: Proc IEEE tencon., Kuala Lumpur, Malaysia, vol. 3(9), pp. 95–99 (2000)Google Scholar
  22. 22.
    He, D., He, C., Jiang, L.G., Zhu, H.W., Hu, G.: Chaotic characteristics of a one-dimensional iterative map with infinite collapses. IEEE Trans. 48(7), 900–906 (2001)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Lu, Z., Shieh, L.S., Chen, G.R.: On robust control of uncertain chaotic systems: a sliding-mode synthesis via chaotic optimization. Chaos Solitons & Fractals 18(4), 819–836 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Yang, J.J., Zhou, J.Z., Wu, W., Liu, F.: A chaos algorithm based on progressive optimality and tabu search algorithm. In: IEEE Proc. 4th International Conf. Machine Learning and Cybernetics, vol. 5, pp. 2977–2981 (2005)Google Scholar
  25. 25.
    Li, B., Jiang, W.S.: Chaos Optimization Method and Its Application. Control Theory and Application 14, 613–615 (1997)Google Scholar
  26. 26.
    Gao, L., Liu, X.: A Resilient Particle Swarm Optimization Algorithm based on chaos and applying it to optimize the fermentation process. International Journal of Information and Systems Sciences 5(3-4), 380–391 (2009)MathSciNetGoogle Scholar
  27. 27.
    Bucolo, M., Caponetto, R., Fortune, L., Frasca, M., Rizzo, A.: Does chaos work better than noise? IEEE Circuits and Systems Magazine, 4–19 (2002)Google Scholar
  28. 28.
    Hongkai, W., Zhiming, C., Pingbo, W., Yinfeng, F.: Study of Intelligent Optimization Methods Applied in Fractional Fourier Transform. International Journal of Computer Theory and Engineering 2(4), 1793–8201 (2010)Google Scholar
  29. 29.
    Cheng, C.: Optimizing hydropower reservoir operation using hybrid genetic algorithm and chaos. Water Resources Management 22(7), 895–909 (2008)CrossRefGoogle Scholar
  30. 30.
    Yan, X.F., Chen, D.Z., Hu, X.S.: Chaos-genetic algorithms for optimizing the operating conditions based on RBF-PLS model. Elsevier Computers and Chemical Engineering, 1390–1404 (2003)Google Scholar
  31. 31.
    Moein-Darbari, F., Khademzaheh, A., Gharoonifard, G.: CGMAP: A new Approach to Network-on-Chip Mapping Problem. IEICE Electronic Express 6(1), 27–34 (2009)CrossRefGoogle Scholar
  32. 32.
    Foster, I., Kesselman, C.: Computational Grids. In: The Grid: Blueprint for New Computing Infrastructure, pp. 15–52. Morgan Kaufmann, San Francisco (1998)Google Scholar
  33. 33.
    Dong, F., Akl, S.G.: Scheduling Algorithms for Grid Computing: State of the Art and Open Problems. In: School of Computing, Queen’s University Kingston, Ontario, pp. 1–55 (2006)Google Scholar
  34. 34.
    Schopf, J.M.: Ten Actions When SuperScheduling, document of Scheduling Working Group. In: Global Grid Forum (2001)Google Scholar
  35. 35.
    Yang, Y., Casanova, H.: NP-complete Scheduling Problems. Journal of Computer and System Sciences 10, 434–439 (1975)Google Scholar
  36. 36.
    Mandal, A., Kennedy, K., Koelbel, C., Martin, G., Mellor-Crummey, J., Liu, B., Johnsson, L.: Scheduling Strategies for Mapping Application Workflows onto the Grid. In: IEEE International Symposium on High Performance Distributed Computing (HPDC 2005), Research Triangle Park, NC, pp. 125–134 (2005)Google Scholar
  37. 37.
    Eilam, T., Appleby, K., Breh, J., Breiter, G., Daur, H., Fakhouri, S.A., Hunt, G.D.H., Lu, T., Miller, S.D., Mummert, L.B., Pershing, J.A., Wagner, H.: Using a utility computing framework to develop utility systems. IBM System Journal 43(1), 97–120 (2004)CrossRefGoogle Scholar
  38. 38.
    Laszewski, G.V.: Java CoG Kit Workflow Concepts for Scientific Experiments. Argonne National Laboratory, Argonne, IL, USA Technique Report (2005)Google Scholar
  39. 39.
    Buyya, R., Giddy, J., Abramson, D.: An Evaluation of Economy-based Resource Trading and Scheduling on Computational Power Grids for Parameter Sweep Applications. In: 2nd Workshop on Active Middleware Services (AMS 2000). Kluwer Academic Press, Dordrecht (2000)Google Scholar
  40. 40.
    Sakellariou, R., Zhao, H., Tsiakkouri, E., Dikaiakos, M.: Scheduling workflows with budget constraints. In: Gorlatch, S., Danelutto, M. (eds.) Integrated Research in GRID Computing, ser., pp. 189–202. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  41. 41.
    Zhu, Y.: A Survey on Grid Scheduling System. In: Department of Computer Science, Hong Kong University of Science and Technology (2003)Google Scholar
  42. 42.
    Gharooni-fard, G., Moein-darbari, F., Deldari, H., Morvaridi, A.: Scheduling of Scientific Workflows Using a Chaos-Genetic Algorithm. In: Procedia Computer Science, vol. 1(1), pp. 1439–1448 (2010)Google Scholar
  43. 43.
    Yu, J., Buyya, R.: Scheduling Scientific Workflow Applications with Deadline and Budget Constraints using Genetic Algorithms. Scientific Programming, 217–230 (2006)Google Scholar
  44. 44.
    Yu, J., Kirley, M., Buyya, R.: Multi-objective Planning for Workflow Execution on Grids. In: 8th IEEE ACM International Conference on Grid Computing, Singapore, pp. 10–17 (2007)Google Scholar
  45. 45.
    Blythe, J., Jain, S., Deelman, E., Gil, Y., Vahi, K., Mandal, A., Kennedy, K.: Task scheduling strategies for workflow-based applications in grids. In: 5th IEEE International Symposium on Cluster Computing and the Grid (CCGrid 2005), vol. 2, pp. 759–767 (2005)Google Scholar
  46. 46.
    Bjerregaard, T., Mahadevan, S.: A Survey of Research and Practices of Network-on-Chip. ACM Computing Surveys, New York (2006)Google Scholar
  47. 47.
    De Micheli, G., Benini, L.: Network on Chip: A New Paradigm for System-on-Chip Design., pp. 7–78 (2002)Google Scholar
  48. 48.
    Dally, W.J., Towles, B.: Route Packets, not Wires: on Chip Interconnection Networks. In: Proceedings of the Design Automation Conference (DAC), pp. 684–689 (2001)Google Scholar
  49. 49.
    Saastamoinen, I., Sigüenza-Tortosa, D., Nurmi, J.: Interconnect IP Node for Future System-on-Chip Designs. In: IEEE International workshop on Electronic design, Test, and Applications, New Zealand, pp. 116–120 (2002)Google Scholar
  50. 50.
    Sgroi, M., Sheets, M., Mihal, A., Keutzer, K., Malik, R.J., Sangiovanni-Vincentelli, A.: Addressing the System-on-Chip Interconnect Woes through Communication-based Design. In: The Design Automation Conference (DAC), pp. 667–672 (2001)Google Scholar
  51. 51.
    Lei, T., Kumar, S.: A Two Step Genetic Algorithm for Mapping Task Graphs to Network on Chip Architecture. In: Proceedings of the 3rd International Conference DSD 2003, Turkey, pp. 180–187 (2003)Google Scholar
  52. 52.
    Murali, S., Micheli, G.D.: Bandwidth-Constrained Mapping of Cores on to NoC Architectures. In: 4th International Conference on DATE 2004, pp. 896–901 (2004)Google Scholar
  53. 53.
    Shen, W.T., Chao, C.H., Lien, Y.K., Wu, A.Y.: A new Binomial Mapping and Optimization Algorithm for Reduced-Complexity Mesh-Based On-Chip Network. In: 1st IEEE International Symposium on Networks-on-Chip (NOCS 2007), New Jersey, pp. 317–322 (2007)Google Scholar
  54. 54.
    Moein-darbari, F., Khademzadeh, A., Gharooni-fard, G.: Evaluating the Performance of Chaos Genetic Algorithm for Solving the Network-on-Chip Mapping Problem. In: IEEE International Conference on Computational Science and Engineering, Vancouver, Canada, vol. 2, pp. 366–373 (2009)Google Scholar
  55. 55.
    Hu, J., Marculescu, R.: Energy-Aware Mapping for Tile-based NoC Architectures under Performance Constraints. ASP-DAC, 233–239 (2003)Google Scholar
  56. 56.
    Gharooni-fard, G., Khademzade, A., Moein-darbari, F.: Evaluating the Performance of Chaotic Maps in Network-on-Chip Mapping Problem. IEICE Electronic Express 6(12), 811–817 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Golnar Gharooni-fard
    • 1
  • Fahime Moein-darbari
    • 1
  1. 1.Computer Department of Islamic Azad UniversityIran

Personalised recommendations