Skip to main content

Signalling in Ectomycorrhizal Symbiosis

  • Chapter
  • First Online:
Signaling and Communication in Plant Symbiosis

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 11))

Abstract

The mechanism by which tree roots and soil fungi interact and form their common, symbiotic organ, the ectomycorrhiza (ECM), involves numerous steps. During this ontogenic process, the developmental programs of both partners are modified in order to enable symbiosis establishment. Both roots and fungus release an array of various metabolites (morphogens and signalling molecules) that establish a molecular cross-talk between symbionts. In contrast to some other plant–microbe interactions, such as rhizobia or arbuscular mycorrhiza symbiosis, the characterization of these signalling molecules and their impact on developmental pathways is poorly known. Recent studies have provided new insights into specific phases and signalling pathways of ECM development on a molecular level and have thereby started to fill the gaps in our understanding of root–fungus communication. Based on this knowledge and recent data from ECM interaction, we will identify possible crosstalk between ECM signalling and root development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar JMM, Shby AM, Richards AJM, Loake GJ, Watson MD, Shaw CH (1988) Chemotaxis of rhizobium leguminosarum biovar phaseoli towards flavonoid inducers of the symbiotic nodulation genes. J Gen Microbiol 134:2741–2746

    Google Scholar 

  • Al-Abras K, Bilger I, Martin F, Le Tacon F, Lapeyrie F (1988) Morphological and physiological changes in ectomycorrhizas of spruce (Picea excelsa (lam.) link) associated with ageing. New Phytol 110:535–540

    Article  Google Scholar 

  • Alexander IJ (2006) Ectomycorrhizas – out of Africa? New Phytol 172:589–591

    Article  PubMed  Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  CAS  PubMed  Google Scholar 

  • Bates TR, Lynch JP (2000) Plant growth and phosphorus accumulation of wild type and two root hair mutants of Arabidopsis thaliana (Brassicaceae). Am J Bot 87:958–963

    Article  CAS  PubMed  Google Scholar 

  • Beguiristain A, Lapeyrie F (1997) Host plant stimulates hypaphorine accumulation in Pisolithus tinctorius hyphae during ectomycorrhizal infection while excreted fungal hypaphorine controls root hair development. New Phytol 136:525–532

    Article  CAS  Google Scholar 

  • Benkova E, Hejatko J (2009) Hormone interactions at the root apical meristem. Plant Mol Biol 69:383–396

    Article  CAS  PubMed  Google Scholar 

  • Blasius D, Feil W, Kottke I, Oberwinkler F (1986) Hartig net structure and formation in fully ensheathed ectomycorrhizas. Nord J Bot 6:837–842

    Article  Google Scholar 

  • Blaudez D, Jacob C, Turnau K, Colpaert JV, Ahonen-Jonnarth U, Finlay R, Botton B, Chalot M (2000) Differential responses of ectomycorrhizal fungi to heavy metals in vitro. Mycol Res 104:1366–1371

    Article  CAS  Google Scholar 

  • Boller T, He SY (2009) Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324:742–744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Buée M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F (2009) 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456

    Article  PubMed  Google Scholar 

  • Chalot M, Blaudez D, Brun A (2006) Ammonia: a candidate for nitrogen transfer at the mycorrhizal interface. Trends Plant Sci 11:263–266

    Article  CAS  PubMed  Google Scholar 

  • Charvet-Candela V, Hitchin S, Ernst D, Sandermann H Jr, Marmeisse R, Gay G (2002) Characterization of an aux/iaa cDNA upregulated in Pinus pinaster roots in response to colonization by the ectomycorrhizal fungus Hebeloma cylindrosporum. New Phytol 154:769–777

    Article  CAS  Google Scholar 

  • Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381

    Article  CAS  PubMed  Google Scholar 

  • Dauphin A, Gerard J, Lapeyrie F, Legue V (2007) Fungal hypaphorine reduces growth and induces cytosolic calcium increase in root hairs of eucalyptus globulus. Protoplasma 231:83–88

    Article  CAS  PubMed  Google Scholar 

  • Dexheimer J, Pargney JC (1991) Comparative anatomy of the host-fungus interface in mycorrhizas. Experientia 47:312–320

    Article  Google Scholar 

  • Dexheimer J, Aubert-Dufresne M-P, Gerard J, Le Tacon F, Mousain D (1986) Ultrastructural localization of acid phosphatase activities in two ectomycorhizas: Pinus nigra nigricans/Hebeloma crustiliniforme and Pinus pinaster/Pisolithus tinctorius. Lett Botaniq 133:343–352

    Google Scholar 

  • D’Haeze W, Holsters M (2002) Nod factor structures, responses, and perception during initiation of nodule development. Glycobiology 12:79R–105R

    Article  PubMed  Google Scholar 

  • Ditengou FA, Lapeyrie F (2000) Hypaphorine from the ectomycorrhizal fungus pisolithus tinctorius counteracts activities of indole-3-acetic acid and ethylene but not synthetic auxins in eucalypt seedlings. Mol Plant Microbe Interact 13:151–158

    Article  CAS  PubMed  Google Scholar 

  • Ditengou FA, Beguiristain T, Lapeyrie F (2000) Root hair elongation is inhibited by hypaphorine, the indole alkaloid from the ectomycorrhizal fungus Pisolithus tinctorius, and restored by indole-3-acetic acid. Planta 211:722–728

    Article  CAS  PubMed  Google Scholar 

  • Ditengou FA, Raudaskoski M, Lapeyrie F (2003) Hypaphorine, an indole-3-acetic acid antagonist delivered by the ectomycorrhizal fungus Pisolithus tinctorius, induces reorganisation of actin and the microtubule cytoskeleton in Eucalyptus globulus ssp bicostata root hairs. Planta 218:217–225

    Article  CAS  PubMed  Google Scholar 

  • Duplessis S, Courty PE, Tagu D, Martin F (2005) Transcript patterns associated with ectomycorrhiza development in eucalyptus globulus and Pisolithus microcarpus. New Phytol 165:599–611

    Article  CAS  PubMed  Google Scholar 

  • Ek M, Ljungquist PO, Stenström E (1983) Indole-3-acetic acid production by mycorrhizal fungi determined by gas chromatography-mass spectrometry. New Phytol 94:401–407

    Article  CAS  Google Scholar 

  • Felten J, Kohler A, Morin E, Bhalerao RP, Palme K, Martin F, Ditengou FA, Legue V (2009) The ectomycorrhizal fungus Laccaria bicolor stimulates lateral root formation in poplar and Arabidopsis through auxin transport and signaling. Plant Physiol 151:1991–2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Felten J, Legue V, Ditengou FA (2010) Lateral root stimulation in the early interaction between arabidopsis thaliana and the ectomycorrhizal fungus Laccaria bicolor: is fungal auxin the trigger? Plant Signal Behav 5:864–867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fries N, Serck-Hanssen K, Dimberg LH, Theander O (1987) Abietic acid, an activator of Basidiospore germination inectomycorrhizal species of the genus Suillus (Boletaceae). Exp Mycol 11:360–363

    Article  Google Scholar 

  • Fukaki H, Tasaka M (2009) Hormone interactions during lateral root formation. Plant Mol Biol 69:437–449

    Article  CAS  PubMed  Google Scholar 

  • Gafur A, Schützendübel A, Langenfeld-Heyser R, Frizt E, Polle A (2004) Compatible and incompetent Paxillus involutus isolates for ectomycorrhiza formation in vitro with poplar (Populus x canescens) differ in H2O2 production. Plant Biol 2004:91–99

    Google Scholar 

  • Gherbi H, Markmann K, Svistoonoff S, Estevan J, Autran D, Giczey G, Auguy F, Peret B, Laplaze L, Franche C, Parniske M, Bogusz D (2008) SYMRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankia bacteria. Proc Natl Acad Sci USA 105:4928–4932

    Article  CAS  PubMed  Google Scholar 

  • Gogala N (1991) Regulation of mycorrhizal infection by hormonal factors produced by hosts and fungi. Experientia 47:331–340

    Article  CAS  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Becard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    Article  CAS  PubMed  Google Scholar 

  • Graham JH, Linderman RG (1980) Ethylene production by ectomycorrhizal fungi, Fusarium oxysporum f. Sp. Pini, and by aseptically synthesized ectomycorrhizae and fusarium-infected douglas-fir roots. Can J Microbiol 26:1340–1347

    Article  CAS  PubMed  Google Scholar 

  • Grove M, Spencer G, Rowwedder W, Mandava N, Worley J, Warthen J, Steffens G, Flippen-Anderson J, Cook J (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281:216–217

    Article  CAS  Google Scholar 

  • Gutjahr C, Paszkowski U (2009) Weights in the balance: jasmonic acid and salicylic acid signaling in root-biotroph interactions. Mol Plant Microbe Interact 22:763–772

    Article  CAS  PubMed  Google Scholar 

  • Hibbett DS, Gilbert LB, Donoghue MJ (2000) Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes. Nature 407:506–508

    Article  CAS  PubMed  Google Scholar 

  • Hilbert JL, Martin F (1988) Regulation of gene expression in ectomycorrhizas. I. Protein changes and the presence of ectomycorrhiza specific polypeptides in the Pisolithus eucalyptus symbiosis. New Phytol 110:339–346

    Article  CAS  Google Scholar 

  • Hilbert JL, Costa G, Martin F (1991) Ectomycorrhizin synthesis and polypeptide changes during the early stage of eucalypt mycorrhiza development. Plant Physiol 97:977–984

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ho I (1987a) Comparison of eight Pisolithus tinctorius isolates for growth rate, enzyme activity, and phytohormone production. Can J For Res 17:31–35

    Article  CAS  Google Scholar 

  • Ho I (1987b) Enzyme activity and phytohormone production of a mycorrhizal fungus, Laccaria laccata. Can J For Res 17:855–858

    Article  CAS  Google Scholar 

  • Horan DP, Chilvers GA (1990) Chemotropism – the key to ectomycorrhiza formation. New Phytol 116:297–301

    Article  CAS  Google Scholar 

  • Horan DP, Chilvers GA, Lapeyrie F (1988) Time sequence of the infection process in eucalypt ectomycorrhizas. New Phytol 109:451–458

    Article  Google Scholar 

  • Ivanchenko MG, Muday GK, Dubrovsky JG (2008) Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana. Plant J 55:335–347

    Article  CAS  PubMed  Google Scholar 

  • Jacobs PF, Peterson RL, Massicotte G (1989) Altered fungal morphogenesis during early stages of ectomycorrhiza formation in Eucalyptus pilularis. Scanning Microsc 3:249–255

    Google Scholar 

  • Jambois A, Dauphin A, Kawano T, Ditengou FA, Bouteau F, Legue V, Lapeyrie F (2005) Competitive antagonism between IAA and indole alkaloid hypaphorine must contribute to regulate ontogenesis. Physiol Plant 123:120–129

    Article  CAS  Google Scholar 

  • Jones AR, Kramer EM, Knox K, Swarup R, Bennett MJ, Lazarus CM, Leyser HM, Grierson CS (2009) Auxin transport through non-hair cells sustains root-hair development. Nat Cell Biol 11:78–84

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kamoun S (2007) (2007) Groovy times: filamentous pathogen effectors revealed. Curr Opin Plant Biol 187:920–928

    Google Scholar 

  • Karabaghli-Degron C, Sotta B, Bonnet M, Gay G, Le Tacon F (1998) The auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) inhibits the stimulation of in vitro lateral root formation and the colonization of the tap-root cortex of norway spruce (Picea abies) seedlings by the ectomycorrhizal fungus Laccaria bicolor. New Phytol 140:723–733

    Article  CAS  Google Scholar 

  • Kende H, Zeevaart J (1997) The five “classical” plant hormones. Plant Cell 9:1197–1210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laajanen K, Vuorinen I, Salo V, Juuti J, Raudaskoski M (2007) Cloning of Pinus sylvestris scarecrow gene and its expression pattern in the pine root system, mycorrhiza and NPA-treated short roots. New Phytol 175:230–243

    Article  CAS  PubMed  Google Scholar 

  • Lagrange H, Jay-Allemand C, Lapeyrie F (2001) Rutin, the phenolglycoside from Eucalyptus root exudates stimulates Pisolithus hyphal growth at picomolor concentrations. New Phytol 150:349–355

    Article  Google Scholar 

  • Landeweert R, Hoffland E, Finlay RD, Kuyper TW, van Breemen N (2001) Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16:248–254

    Article  PubMed  Google Scholar 

  • Le Quere A, Wright DP, Soderstrom B, Tunlid A, Johansson T (2005) Global patterns of gene regulation associated with the development of ectomycorrhiza between birch (Betula pendula roth.) and Paxillus involutus (batsch) fr. Mol Plant Microbe Interact 18:659–673

    Article  PubMed  Google Scholar 

  • Martin F (2007) Fair trade in the underworld: The ectomycorrhizal symbiosis, vol 2, The mycota biology of the fungal cell. Springer, Heidelberg

    Google Scholar 

  • Martin F, Nehls U (2009) Harnessing ectomycorrhizal genomics for ecological insights. Curr Opin Plant Biol 12:508–515

    Article  CAS  PubMed  Google Scholar 

  • Martin F, Tagu D (1999) Developmental biology of a plant-fungus-symbiosis: the ectomycorrhiza. In: Varma A, Hock B (eds), Mycorrhiza: structure, function, molecular biology and biotechnology, vol 2. Springer-Verlag berlin, Heidelberg, 51–73

    Google Scholar 

  • Martin F, Duplessis S, Ditengou F, Lagrange H, Voiblet C, Lapeyrie F (2001) Developmental cross talking in the ectomycorrhizal symbiosis: signals and communication genes. New Phytol 151:145–154

    Article  CAS  Google Scholar 

  • Martin F, Aerts A, Ahren D, Brun A, Danchin EG, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V, Salamov A, Shapiro HJ, Wuyts J, Blaudez D, Buee M, Brokstein P, Canback B, Cohen D, Courty PE, Coutinho PM, Delaruelle C, Detter JC, Deveau A, DiFazio S, Duplessis S, Fraissinet-Tachet L, Lucic E, Frey-Klett P, Fourrey C, Feussner I, Gay G, Grimwood J, Hoegger PJ, Jain P, Kilaru S, Labbe J, Lin YC, Legue V, Le Tacon F, Marmeisse R, Melayah D, Montanini B, Muratet M, Nehls U, Niculita-Hirzel H, Oudot-Le Secq MP, Peter M, Quesneville H, Rajashekar B, Reich M, Rouhier N, Schmutz J, Yin T, Chalot M, Henrissat B, Kues U, Lucas S, Van de Peer Y, Podila GK, Polle A, Pukkila PJ, Richardson PM, Rouze P, Sanders IR, Stajich JE, Tunlid A, Tuskan G, Grigoriev IV (2008) The genome of laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92

    Article  CAS  PubMed  Google Scholar 

  • Massicote HB, Perterson RL, Ashford AE (1987) Ontogeny of Eucalyptus pilulirisPisolithus tinctorius ectomycorrhizae. I. Light microscopy and scanning electron microscopy. Can J Bot 65:1927–1939

    Article  Google Scholar 

  • Mensen R, Hager A, Salzer P (1998) Elicitor-induced changes of wall-bound and secreted peroxidase activities in suspension-cultured spruce (Picea abies) cells are attenuated by auxins. Physiol Plant 102:539–546

    Article  CAS  Google Scholar 

  • Miersch O, Bohlmann H, Wasternack C (1999) Jasmonates and related compounds from Fusarium oxysporum. Phytochemistry 50:517–523

    Article  CAS  Google Scholar 

  • Moyersoen B (2006) Pakaraimaea dipterocarpacea is ectomycorrhizal, indicating an ancient gondwanaland origin for the ectomycorrhizal habit in Dipterocarpaceae. New Phytol 172:753–762

    Article  PubMed  Google Scholar 

  • Nylund JE (1980) Symplastic continuity during hartig net formation in Norway spruce ectomycorrhizas. New Phytol 86:373

    Article  Google Scholar 

  • Nylund JE, Unestam T (1982) Structure and physiology of ectomycorrhizae I. The process of mycorrhiza formation in Norway spruce in vitro. New Phytol 91:63–79

    Article  Google Scholar 

  • Olah B, Briere C, Becard G, Denarie J, Gough C (2005) Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J 44:195–207

    Article  CAS  PubMed  Google Scholar 

  • Pitts RJ, Cernac A, Estelle M (1998) Auxin and ethylene promote root hair elongation in Arabidopsis. Plant J 16:553–560

    Article  CAS  PubMed  Google Scholar 

  • Plett JM (2010) Ethylene – a key arbitrator to plant–fungal symbiotic interactions? New Phytol 185:868–871

    Article  CAS  PubMed  Google Scholar 

  • Rahman A, Hosokawa S, Oono Y, Amakawa T, Goto N, Tsurumi S (2002) Auxin and ethylene response interactions during Arabidopsis root hair development dissected by auxin influx modulators. Plant Physiol 130:1908–1917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raudaskoski M, Salo V (2008) Dichotomization of mycorrhizal and NPA-treated short roots in Pinus sylvestris. Plant Signal Behav 3:113–115

    Article  PubMed Central  PubMed  Google Scholar 

  • Rayle DL, Cleland RE (1992) The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiol 99:1271–1274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reddy SM, Hitchin S, Melayah D, Pandey AK, Raffier C, Henderson J, Marmeisse R, Gay G (2006) The auxin-inducible GH3 homologue pp-gh3.16 is downregulated in Pinus pinaster root systems on ectomycorrhizal symbiosis establishment. New Phytol 170:391–400

    Article  CAS  PubMed  Google Scholar 

  • Regvar M, Gogala N, Znidarsic N (1997) Jasmonic acid affects mycorrhization of spruce seedlings with Laccaria laccata. Trees 11:511–514

    Google Scholar 

  • Reineke G, Heinze B, Schirawski J, Buettner H, Kahmann R, Basse CW (2008) Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation. Mol Plant Pathol 9:339–355

    Article  CAS  PubMed  Google Scholar 

  • Rincon A, Gerard J, Dexheimer J, Le Tacon F (2001) Effect of an auxin transport inhibitor on aggregation and attachment processes during ectomycorrhiza formation between Laccaria bicolor S238N and Picea abies. Can J Bot 79:1152–1160

    Article  CAS  Google Scholar 

  • Rincon A, Priha O, Sotta B, Bonnet M, Le Tacon F (2003) Comparative effects of auxin transport inhibitors on rhizogenesis and mycorrhizal establishment of spruce seedlings inoculated with Laccaria bicolor. Tree Physiol 23:785–791

    Article  CAS  PubMed  Google Scholar 

  • Rousseau JVD, Sylvia DM, Fox AJ (1994) Contribution of ectomycorrhiza of the potential nutrient-absorbing surface of pine. New Phytol 128:639–644

    Article  Google Scholar 

  • Rudawska ML, Kieliszewska-Rokicka B (1997) Mycorrhizal formation by Paxillus involutus strains in relation to their IAA-synthesizing activity. New Phytol 137:509–515

    Article  CAS  Google Scholar 

  • Rupp LA, DeVries HE, Mudge KW (1989) Effect of aminocyclopropane carboxylic acid and aminoethoxyvinylglycine on ethylene production by ectomycorrhizal fungi. Can J Bot 67:483–485

    Article  CAS  Google Scholar 

  • Sebastiana M, Figueiredo A, Acioli B, Sousa L, Pessoa F, Balde A, Pais MS (2009) Identification of plant genes involved on the initial contact between ectomycorrhizal symbionts (Castanea sativa – European chestnut and Pisolithus tinctorius). Eur J Soil Biol 45:275–282

    Article  CAS  Google Scholar 

  • Simon L, Bousquet J, Levesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Natures 363:67–69

    Article  Google Scholar 

  • Slankis V (1950) Effect of naphthalene acetic acid on dichotomous branching of isolates roots of Pinus sylvestris. Physiol Plant 3:40–44

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Splivallo R, Fischer U, Gobel C, Feussner I, Karlovsky P (2009) Truffles regulate plant root morphogenesis via the production of auxin and ethylene. Plant Physiol 150:2018–2029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005) Characterization of an arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17:616–627

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stepanova AN, Yun J, Likhacheva AV, Alonso JM (2007) Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19:2169–2185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K, Parniske M (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959–962

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Xu Y, Ye S, Jiang H, Chen Q, Liu F, Zhou W, Chen R, Li X, Tietz O, Wu X, Cohen JD, Palme K, Li C (2009) Arabidopsis asa1 is important for jasmonate-mediated regulation of auxin biosynthesis and transport during lateral root formation. Plant Cell 21:1495–1511

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Swarup K, Benkova E, Swarup R, Casimiro I, Peret B, Yang Y, Parry G, Nielsen E, De Smet I, Vanneste S, Levesque MP, Carrier D, James N, Calvo V, Ljung K, Kramer E, Roberts R, Graham N, Marillonnet S, Patel K, Jones JD, Taylor CG, Schachtman DP, May S, Sandberg G, Benfey P, Friml J, Kerr I, Beeckman T, Laplaze L, Bennett MJ (2008) The auxin influx carrier LAX3 promotes lateral root emergence. Nat Cell Biol 10:946–954

    Article  CAS  PubMed  Google Scholar 

  • Tagu D, De Bellis R, Balestrini R, De Vries OMH, Piccoli G, Stocchi V, Bonfante P, Martin F (2001) Immunolocalization of hydrophobin HYDPt-1 from the ectomycorrhizal basidiomycete Pisolithus tinctorius during colonization of Eucalyptus globulus roots tinctorius during colonization of Eucalyptus globulus roots. New Phytol 149:127–135

    Article  CAS  Google Scholar 

  • Taylor AFS (2002) Fungal diversity in ectomycorrhizal communities: sample efforts and species detection. Plant Soil 244:753–760

    Article  Google Scholar 

  • Terpstra I, Heidstra R (2009) Stem cells: the root of all cells. Semin Cell Dev Biol 20:1089–1096

    Article  CAS  PubMed  Google Scholar 

  • Tranvan H, Habricot Y, Jeannette E, Gay G, Sotta B (2000) Dynamics of symbiotic establishment between an IAA-overproducing mutant of the ectomycorrhizal fungus Hebeloma cylindrosporum and Pinus pinaster. Tree Physiol 20:123–129

    Article  PubMed  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    Article  CAS  PubMed  Google Scholar 

  • Wallender H, Nylund JE, Sundberg B (1992) Ectomycorrhiza and nitrogen effects on root IAA: result contrary to current theory. Mycorrhiza 1:91–92

    Article  Google Scholar 

  • Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY (2005) Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17:2204–2216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wessels JGH (1997) Hydrophobins: proteins that change the nature of the fungal surface. Adv Microb Physiol 38:1–45

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie Legué .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Felten, J., Martin, F., Legué, V. (2012). Signalling in Ectomycorrhizal Symbiosis. In: Perotto, S., Baluška, F. (eds) Signaling and Communication in Plant Symbiosis. Signaling and Communication in Plants, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20966-6_6

Download citation

Publish with us

Policies and ethics