Skip to main content

Nanocarriers, Films and Composites Based on Milk Proteins

  • Chapter
  • First Online:
Advances in Natural Polymers

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 18))

Abstract

The dominant milk proteins, caseins are similar in structure and found in milk as nanoparticles called micelle. Casein micelles (300-600 nm) are composed of several thousand molecules, bonded via calcium phosphate nanoclusters. All other proteins present in milk are grouped together and termed whey proteins. The primary whey protein in cow milk is β-lactoglobulin. Here we firstly review the chemistry of caseins and whey proteins including presented models and theories for the structure of casein micelles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frinault, A., Gallant, D.J., Bouchet, B., Dumont, J.P.: Preparation of casein films by a modified wet spinning process. J. Food Sci. 62(4), 744–747 (1997)

    CAS  Google Scholar 

  2. Fox, P.F., Kelly, A.L.: The caseins. In: Yada, R.Y. (ed.) Proteins in Food Processing. Woodhead Publishing Ltd and CRC Press LLC, Cambridge (2004)

    Google Scholar 

  3. Walstra, P., Wouters, J., Geurts, T.: Dairy Science and Technology, 2nd edn. CRC Press LLC, New York (2006)

    Google Scholar 

  4. Dickinson, E.: Casein in emulsions: interfacial properties and interactions. Int. Dairy J. 9, 305–312 (1999)

    CAS  Google Scholar 

  5. Horn, D.S.: Casein interactions: casting light on the black boxes, the structure in dairy products. Int. Dairy J. 8, 171–177 (1998)

    Google Scholar 

  6. Farrell, H.M., Malin, E.L., Brown, E.M., Mora-Gutierrezt, A.: Review of the chemistry of α s2-casein and the generation of the homologous molecular model to explain its properties. J. Dairy Sci. 92, 1338–1353 (2009)

    CAS  Google Scholar 

  7. Ginger, M.R., Grignor, M.R.: Comparative aspects of milk caseins. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 124(2), 133–145 (1999)

    CAS  Google Scholar 

  8. Hoagland, P.D., Unruh, J.J., Wickham, E.D., Farrell, H.M.: Secondary structure of bovine α s2-casein: theoretical and experimental approaches. J. Dairy Sci. 84, 1944–1949 (2001)

    CAS  Google Scholar 

  9. Gaudin, J., Le Parc, A., Castrec, B., Ropers, M., Choiset, Y., Shchutskaya, J., Yousefi, R., Muronetz, V.I., Zuev, Y., Chobert, J.M., Haertlé, T.: Engineering of caseins and modulation of their structures and interactions. Biotechnol. Adv. 27, 1124–1131 (2009)

    CAS  Google Scholar 

  10. Farrell, H.M., Wickham, E.D., Unruh, J.J., Qi, P.X., Hoagland, P.D.: Secondary structural studies of bovine caseins: temperature dependence of β-casein structure as analyzed by circular dichroism and FTIR spectroscopy and correlation with micellization. Food Hydrocolloids 15, 341–354 (2001)

    CAS  Google Scholar 

  11. Kumosinski, T.F., Brown, E.M., Farrell, H.M.: Three-dimensional molecular modeling of bovine caseins: κ-casein. J. Dairy Sci. 74, 2879–2887 (1991)

    CAS  Google Scholar 

  12. Creamer, L.K., Plowman, J.E., Liddell, M.J., Smith, M.H., Hill, J.P.: Micelle stability: κ-casein structure and function. J. Dairy Sci. 81, 3004–3012 (1998)

    CAS  Google Scholar 

  13. Swaisgood, H.E.: Symposium: genetic perspectives on milk proteins: comparative studies and nomenclature, review and update of casein chemistry. J. Dairy Sci. 76, 3054–3061 (1993)

    CAS  Google Scholar 

  14. Fox, P.F., Brodkorb, A.: The casein micelle: historical aspects, current concepts and significance. Int. Dairy J. 18, 677–684 (2008)

    CAS  Google Scholar 

  15. Horne, D.S.: Casein structure, self-assembly and gelation. Curr. Opin. Colloid Interface Sci. 11, 148–153 (2006)

    CAS  Google Scholar 

  16. Smyth, E., Clegg, R.A., Holt, C.: A biological perspective on the structure and function of caseins and casein micelles. Int. J. Dairy Technol. 57, 121–126 (2004)

    CAS  Google Scholar 

  17. Zhang, Z.P., Fujii, M., Aoli, T.: Behavior of calcium and phosphate in artificial casein micelles. J. Dairy Sci. 79, 1722–1727 (1996)

    Google Scholar 

  18. De Kruif, C.G., Holt, C.: Casein micelle structure, functions and interactions. In: Fox, R.F., McSweeney, P.L.H. (eds.) Advanced Dairy Chemistry. Kluwer Academic Plenum, New York (2003)

    Google Scholar 

  19. Liu, Y., Guo, R.: pH-dependent structure and properties of casein micelles. Biophys. Chem. 136, 67–73 (2008)

    CAS  Google Scholar 

  20. Euston, S.R., Horne, D.S.: Simulating the self-association of caseins. Food Hydrocolloids 19, 379–386 (2005)

    CAS  Google Scholar 

  21. Semo, E., Kesselman, E., Danino, D., Livney, Y.D.: Casein micelle as a natural nano-capsular vehicle for nutraceuticals. Food Hydrocolloids 21, 936–942 (2007)

    CAS  Google Scholar 

  22. Mounsey, J.S., O’kennedy, B.T., Kelly, P.M.: Comparison of re-micellised casein prepared from acid casein with micellar casein prepared by membrane filtration. Lait 85, 419–430 (2005)

    CAS  Google Scholar 

  23. Payens, T.A.J.: Association of caseins and their possible relation to structure of the casein micelle. J. Dairy Sci. 49, 1317–1324 (1966)

    CAS  Google Scholar 

  24. Farrer, D., Lips, A.: On the self-assembly of sodium caseinate. Int. Dairy J. 9, 281–286 (1999)

    CAS  Google Scholar 

  25. Madadlou, A., Mousavi, M.E., Emam-Djomeh, Z., Ehsani, M., Sheehan, D.: Comparison of pH-dependent sonodisruption of re-assembled casein micelles by 35 and 130 kHz ultrasounds. J. Food Eng. 95, 505–509 (2009)

    CAS  Google Scholar 

  26. Madadlou, A., Mousavi, M.E., Emam-Djomeh, Z., Sheehan, D.: Dual-frequency sonication for disrupting the self assembled casein nanoparticles. Milchwissenschaft. 67, 78–81 (2012)

    CAS  Google Scholar 

  27. Madadlou, A., Mousavi, M.E., Emam-Djomeh, Z., Ehsani, M., Sheehan, D.: Sonodisruption of re-assembled casein micelles at different pH values. Ultrason. Sonochem. 16, 644–648 (2009)

    CAS  Google Scholar 

  28. Huppertz, T., Vaia, B., Smiddy, M.A.: Reformation of casein particles from alkaline-disrupted casein micelles. J. Dairy Res. 75, 44–47 (2008)

    CAS  Google Scholar 

  29. Madadlou, A., Mousavi, M.E., Emam-Djomeh, Z., Sheehan, D., Ehsani, M.: Alkaline pH does not disrupt re-assembled casein micelles. Food Chem. 116, 929–932 (2009)

    CAS  Google Scholar 

  30. Farrell, H.M., Malin, E.L., Brown, E.M., Qi, P.X.: Casein micelle structure: what can be learned from milk synthesis and structural biology? Curr. Opin. Colloid Interface Sci. 11, 135–147 (2006)

    CAS  Google Scholar 

  31. Dalgleish, D.G., Spagnuolo, P.A., Goff, H.D.: A possible structure of the casein micelle based on high-resolution field-emission scanning electron microscopy. Int. Dairy J. 14, 1025–1031 (2004)

    CAS  Google Scholar 

  32. Nilsson, L.-E., Lyckand, S., Tamime, A.Y.: Production of drinking products. In: Tamime, A.Y. (ed.) Fermented Milks. Blackwell Science Ltd, UK (2006)

    Google Scholar 

  33. Azarikia, F., Abbasi, S.: On the stabilization of doogh (Iranian yoghurt drink) by Gum Tragacanth. Food Hydrocolloids 24(4), 358–363 (2010)

    CAS  Google Scholar 

  34. Azarikia, F., Abbasi, S., Azizi, M.H.: Comparison of the efficiency and mechanisms of some hydrocolloids on preventing the serum separation of Doogh. Iran. J. Nutr. Sci. Food Technol. 4(1), 11–22 (2009). (in Persian)

    Google Scholar 

  35. Tuinier, R., Rolin, C., de Kruif, C.G.: Electrosorption of pectin onto casein micelles. Biomacromolecules 3, 632–638 (2002)

    CAS  Google Scholar 

  36. Holt, C.: Structure and stability of the bovine casein micelle. In: Anfinsen, C.B. (ed.) Advances in Protein Chemistry, vol. 43. Academic, San Diego, California, (1992)

    Google Scholar 

  37. Phadungath, C.: Casein micelle structure: a concise review. Songklanakarin J. Sci Technol 27(1), 201–212 (2005)

    CAS  Google Scholar 

  38. Lencki, R.W.: Evidence for fibril-like structure in bovine casein micelles. J. Dairy Sci. 90, 75–89 (2007)

    CAS  Google Scholar 

  39. Walstra, P.: Scientific commons: casein sub-micelles: do they exist?. Archive of Wageningen University and Research center, The Netherlands (1999)

    Google Scholar 

  40. Walstra, P.: Xasein sub-micelles: do they exist? Int. Dairy J. 9, 189–192 (1999)

    CAS  Google Scholar 

  41. Horne, D.S.: Casein micelle structure: models and muddles. Curr. Opin. Colloid Interface Sci. 7, 456–461 (2002)

    CAS  Google Scholar 

  42. McMahon, D.J., Oommen, B.S.: Supramolecular structure of casein micelle. J. Dairy Sci. 91, 1709–1721 (2008)

    CAS  Google Scholar 

  43. Shukla, A., Narayanan, T., Zanchi, D.: Structure of casein micelles and their complexation with tannins. Soft Matter 5, 2884–2888 (2009)

    CAS  Google Scholar 

  44. Kilara, A.: Whey proteins. In: Yada, R.Y. (ed.) Proteins in Food Processing. Woodhead Publishing Ltd and CRC Press LLC, Cambridge (2004)

    Google Scholar 

  45. Permyakov, E.A., Berliner, L.J.: α-Lactalbumin: structure and function. FEBS Lett. 473, 269–274 (2000)

    CAS  Google Scholar 

  46. Kontopidis, G., Holt, C., Sawyer, L.: Invited review: β-Lactoglobulin: binding properties, structure, and function. J. Dairy Sci. 87, 785–796 (2004)

    CAS  Google Scholar 

  47. Hernandez-ledesma, B., Recio, I., Amigo, L.: β-Lactoglobulin as source of bioactive peptides. Amino Acids 35, 257–265 (2008)

    CAS  Google Scholar 

  48. Graveland-Bikker, J.F., de Kruif, C.G.: Unique milk protein based nanotubes: food and nanotechnology meet. Trends Food Sci. Technol. 17, 196–203 (2006)

    CAS  Google Scholar 

  49. Ipsen, R., Otte, J.: Self-assembly of partially hydrolysed α-lactalbumin. Biotechnol. Adv. 25, 602–605 (2007)

    CAS  Google Scholar 

  50. Wakabayashi, H., Yamauchi, K., Takase, M.: Lactoferrin research, technology and applications. Int. Dairy J. 16, 1241–1251 (2006)

    CAS  Google Scholar 

  51. Livney, Y.D.: Milk proteins as vehicles for bioactives. Curr. Opin. Colloid Interface Sci. 15, 73–83 (2010)

    CAS  Google Scholar 

  52. Chen, L., Remondetto, G.E., Subirade, M.: Food protein-based materials as nutraceutical delivery systems. Trends Food Sci. Technol. 17, 272–283 (2006)

    CAS  Google Scholar 

  53. Huppertz, T., de Kruif, C.G.: Structure and stability of nanogel particles prepared by internal cross-linking of casein micelles. Int. Dairy J. 18, 556–565 (2008)

    CAS  Google Scholar 

  54. Heidebach, T., Forst, P., Kulozik, U.: Transglutaminase-induced caseinate gelation for the microencapsulation of probiotic cells. Int. Dairy J. 19, 77–84 (2009)

    CAS  Google Scholar 

  55. Song, F., Zhang, L.M., Shi, J.F., Li, N.N.: Novel casein hydrogels: formation, structure and controlled drug release. Colloids Surf. B 79, 142–148 (2010)

    CAS  Google Scholar 

  56. Zimet, P., Livney, Y.D.: Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for ω-3 polyunsaturated fatty acids. Food Hydrocolloids 23, 1120–1126 (2009)

    CAS  Google Scholar 

  57. Jones, O.G., Lesmes, U., Dubin, P., McClements, D.J.: Effect of polysaccharide charge on formation and properties of biopolymer nanoparticles created by heat treatment of β-lactoglobulin-pectin complexes. Food Hydrocolloids 24, 374–383 (2010)

    CAS  Google Scholar 

  58. Koksoy, A., Kilic, M.: Use of hydrocolloids in textural stabilization of a yoghurt drink, Ayran. Food Hydrocolloids 18, 593–600 (2004)

    CAS  Google Scholar 

  59. Chanasattru, W., Jones, O.G., Decker, E.A., McClements, D.J.: Impact of cosolvents on formation and properties of biopolymer nanoparticles formed by heat treatment of β-lactoglobulin-pectin complexes. Food Hydrocolloids 23, 2450–2457 (2009)

    CAS  Google Scholar 

  60. Lee, S.J., Rosenberg, M.: Microencapsulation of theophylline in composite wall system consisting of whey proteins and lipids. J. Microencapsul. 18, 309–321 (2001)

    CAS  Google Scholar 

  61. Shi, L., Zhou, J., Gunasekaran, S.: Low temperature fabrication of ZnO-whey protein isolate nanocomposite. Mater. Lett. 62, 4383–4385 (2008)

    CAS  Google Scholar 

  62. Jafari, S.M., Assadpoor, E., Bhandari, B., He, Y.: Nano-particle encapsulation of fish oil by spray drying. Food Res. Int. 41, 172–183 (2008)

    CAS  Google Scholar 

  63. Jafari, S.M., He, Y., Bhandari, B.: Role of Powder particle size on the encapsulation efficiency of oils during spray drying. Drying Technol. 25, 1091–1099 (2007)

    Google Scholar 

  64. Sohail, S.S., Wang, B., Biswas, M.A.S., Oh, J.-H.: Physical, morphological, and barrier properties of edible casein films with wax applications. J. Food Sci. 71(4), 255–259 (2006)

    Google Scholar 

  65. Chambi, H., Grosso, C.: Edible films produced with gelatin and casein cross-linked with transglutaminase. Food Res. Int. 39, 458–466 (2006)

    CAS  Google Scholar 

  66. Ozdemir, M., Floros, J.D.: Optimization of edible whey protein films containing preservatives for water vapor permeability, water solubility and sensory characteristics. J. Food Eng. 86, 215–224 (2008)

    CAS  Google Scholar 

  67. Fabra, M.J., Talens, P., Chiralt, A.: Water sorption isotherms and phase transitions of sodium caseinate–lipid films as affected by lipid interactions. Food Hydrocolloids 24, 384–391 (2010)

    CAS  Google Scholar 

  68. Abu, Diak O., Bani-Jaber, A., Amro, B., Jones, D., Andrews, G.P.: The manufacture and characterization of casein films as novel tablet coatings. Food Bioprod. Process. 85(3), 284–290 (2007)

    Google Scholar 

  69. Javanmard, M.: Effect of whey protein edible film packaging on the quality and moisture uptake of dried peanuts. J. Food Process Eng. 31, 503–516 (2008)

    Google Scholar 

  70. Gounga, M.E., Xu, S.Y., Wang, Z.: Whey protein isolate-based edible films as affected by protein concentration, glycerol ratio and pullulan addition in film formation. J. Food Eng. 83, 521–530 (2007)

    CAS  Google Scholar 

  71. Audic, J., Chaufer, B., Daufin, G.: Non-food applications of milk components and dairy co-products: a review. Lait 83, 417–438 (2003)

    CAS  Google Scholar 

  72. Khwaldia, K., Banon, S., Perez, C., Desobry, S.: Properties of sodium caseinate film-forming dispersions and films. J. Dairy Sci. 87, 2011–2016 (2004)

    CAS  Google Scholar 

  73. Siracusa, V., Rocculi, P., Romani, S., Rosa, M.D.: Biodegradable polymers for food packaging: a review. Trends Food Sci. Technol. 19, 634–643 (2008)

    CAS  Google Scholar 

  74. Fabra, M.J., Talens, P., Chiralt, A.: Influence of calcium on tensile, optical and water vapour permeability properties of sodium caseinate edible films. J. Food Eng. 96, 356–364 (2010)

    CAS  Google Scholar 

  75. Chen, H.: Functional properties and applications of edible films made of milk proteins. J. Dairy Sci. 78, 2563–2583 (1995)

    CAS  Google Scholar 

  76. Mauer, L.J., Smith, D.E., Labuza, T.P.: Water vapor permeability, mechanical, and structural properties of edible β-casein films. Int. Dairy J. 10, 353–358 (2000)

    CAS  Google Scholar 

  77. Tomasula, P.M., Yee, W.C., Parris, N.: Oxygen permeability of films made from CO2-precipitated casein and modified casein. J. Agric. Food Chem. 51, 634–639 (2003)

    CAS  Google Scholar 

  78. Dangaran, K.L., Cooke, P., Tomasula, P.M.: The effect of protein particle size reduction on the physical properties of CO2-precipitated casein films. J. Food Sci. 71, 196–201 (2006)

    Google Scholar 

  79. Kokoszka, S., Debeaufort, F., Lenart, A., Voilley, A.: Water vapour permeability, thermal and wetting properties of whey protein isolate based edible films. Int. Dairy J. 20, 53–60 (2010)

    CAS  Google Scholar 

  80. Hong, S.I., Krochta, J.M.: Oxygen barrier performance of whey-protein-coated plastic films as affected by temperature, relative humidity, base film and protein type. J. Food Eng. 77, 739–745 (2006)

    CAS  Google Scholar 

  81. Galietta, G., Gioia, L.D., Guilbert, S., Cuq, B.: Mechanical and thermomechanical properties of films based on whey proteins as affected by plasticizer and crosslinking agents. J. Dairy Sci. 81, 3123–3130 (1998)

    CAS  Google Scholar 

  82. Banerjee, R., Chen, H.: Functional properties of edible films using whey protein concentrate. J. Dairy Sci. 78, 1673–1683 (1995)

    CAS  Google Scholar 

  83. Zinoviadou, K.G., Koutsoumanis, K.P., Biliaderis, C.G.: Physical and thermo-mechanical properties of whey protein isolate films containing antimicrobials, and their effect against spoilage flora of fresh beef. Food Hydrocolloids 24, 49–59 (2010)

    CAS  Google Scholar 

  84. Mahmoud, R., Savello, P.A.: Mechanical properties of and water vapor transferability through whey protein films. J. Dairy Sci. 75, 942–946 (1992)

    CAS  Google Scholar 

  85. Schou, M., Longares, A., Montesinos-Herrero, C., Monahan, F.J., O’Riordan, D., O’Sullivan, M.: Properties of edible sodium caseinate films and their application as food wrapping. LWT-Food Sci. Technol. 38, 605–610 (2005)

    CAS  Google Scholar 

  86. Audic, J.L., Chaufer, B.: Influence of plasticizers and cross linking on the properties of biodegradable films made from sodium caseinate. Eur. Polymer J. 41, 1934–1942 (2005)

    CAS  Google Scholar 

  87. Ouattara, B., Canh, L.T., Vachon, C., Mateescu, M.A., Lacroix, M.: Use of γ-irradiation cross-linking to improve the water vapor permeability and the chemical stability of milk protein films. Radiat. Phys. Chem. 63, 821–825 (2002)

    CAS  Google Scholar 

  88. Ghanbarzadeh, B., Oromiehi, A.R.: Biodegradable biocomposite films based on whey protein and zein: barrier, mechanical properties and AFM analysis. Int. J. Biol. Macromol. 43, 209–215 (2008)

    CAS  Google Scholar 

  89. Wang, L., Auty, M.A.E., Kerry, J.P.: Physical assessment of composite biodegradable films manufactured using whey protein isolate, gelatin and sodium alginate. J. Food Eng. 96, 199–207 (2010)

    CAS  Google Scholar 

  90. Lacroix, M., Le, T.C., Ouattara, B., Yu, H., Letendre, M., Sabato, S.F., Mateescu, M.A., Patterson, G.: Use of γ-irradiation to produce films from whey, casein and soya proteins: structure and functionals characteristics. Radiat. Phys. Chem. 63, 827–832 (2002)

    CAS  Google Scholar 

  91. Jagannath, J.H., Radhika, M., Nanjappa, C., Murali, H.S., Bawa, A.S.: Antimicrobial, mechanical, barrier, and thermal properties of starch–casein based, Neem (Melia azardirachta) extract containing film. J. Appl. Polym. Sci. 101, 3948–3954 (2006)

    CAS  Google Scholar 

  92. Ferreira, C.O., Nunes, C.A., Delgadillo, I., Lopes-da-Silva, J.A.: Characterization of chitosan–whey protein films at acid pH. Food Res. Int. 42, 807–813 (2009)

    CAS  Google Scholar 

  93. Ciesla, K., Salmieri, S., Lacroix, M.: γ-Irradiation influence on the structure and properties of calcium caseinate-whey protein isolate based films. Part 2. Influence of polysaccharide addition and radiation treatment on the structure and functional properties of the films. J. Agric. Food Chem. 54, 8899–8908 (2006)

    CAS  Google Scholar 

  94. Fabra, M.J., Talens, P., Chiralt, A.: Effect of alginate and λ-carrageenan on tensile properties and water vapour permeability of sodium caseinate–lipid based films. Carbohydr. Polym. 74(3), 419–426 (2008)

    CAS  Google Scholar 

  95. Osés, J., Fabregat-Vázquez, M., Pedroza-Islas, R., Tomás, S.A., Cruz-Orea, A., Maté, J.I.: Development and characterization of composite edible films based on whey protein isolate and mesquite gum. J. Food Eng. 92, 56–62 (2009)

    Google Scholar 

  96. Kristo, E., Biliaderis, C.G.: Water sorption and thermo-mechanical properties of water/sorbitol-plasticized composite biopolymer films: caseinate–pullulan bilayers and blends. Food Hydrocolloids 20, 1057–1071 (2006)

    CAS  Google Scholar 

  97. Kristo, E., Biliaderis, C.G., Zampraka, A.: Water vapour barrier and tensile properties of composite caseinate-pullulan films: biopolymer composition effects and impact of beeswax lamination. Food Chem. 101, 753–764 (2007)

    CAS  Google Scholar 

  98. Fabra, M.J., Talens, P., Chiralt, A.: Microstructure and optical properties of sodium caseinate films containing oleic acid–beeswax mixtures. Food Hydrocolloids 23, 676–683 (2009)

    CAS  Google Scholar 

  99. Fabra, M.J., Jimenez, A., Atares, L., Talens, P., Chiralt, A.: Effect of fatty acids and beeswax addition on properties of sodium caseinate dispersions and films. Biomacromolecules 10, 1500–1507 (2009)

    CAS  Google Scholar 

  100. Shaw, N.B., Monahan, F.J., O’Riordan, E.D., O’Sullivan, M.: Effect of soya oil and glycerol on physical properties of composite WPI films. J. Food Eng. 51, 299–304 (2002)

    Google Scholar 

  101. Chick, J., Hernandez, R.J.: Physical, thermal, and barrier characterization of casein-wax-based edible films. J. Food Sci. 67(3), 1073–1079 (2002)

    CAS  Google Scholar 

  102. Longares, A., Monahan, F.J., O’Riordan, E.D., O’Sullivan, M.: Physical properties of edible films made from mixtures of sodium caseinate and WPI. Int. Dairy J. 15, 1255–1260 (2005)

    CAS  Google Scholar 

  103. Dejewska, A., Mazurkiewicz, P., Tomasik, P., Zaleska, H.: Electrochemical synthesis of polysaccharide-protein complexes. Part 1: preliminary studies on apple pectin-albumin complexes. Starch 47(6), 219–223 (1995)

    Google Scholar 

  104. Zaleska, H., Ring, S.G., Tomasik, P.: Apple pectin complexes with whey protein isolate. Food Hydrocolloids 14, 377–382 (2000)

    CAS  Google Scholar 

  105. Zaleska, H., Ring, S.G., Tomasik, P.: Electrosynthesis of potato starch-whey protein isolate complexes. Carbohydr. Polym. 45, 89–94 (2001)

    CAS  Google Scholar 

  106. Zaleska, H., Tomasik, P., Lii, C.-y: Formation of carboxymethyl cellulose-casein complexes by electrosynthesis. Food Hydrocoloids 16, 215–224 (2002)

    CAS  Google Scholar 

  107. Zaleska, H., Mazurkiewicz, J., Tomasik, P., Baczkowicz, M.: Electrochemical synthesis of polysaccharide-protein complexes. Part 2. Apple pectin-casein complexes. Nahrung 43(4), 278–283 (1999)

    CAS  Google Scholar 

  108. Zaleska, H., Ring, S., Tomasik, P.: Electrosynthesis of potato starch-casein complexes. Int. J. Food Sci. Technol. 36, 509–515 (2001)

    CAS  Google Scholar 

  109. Debeaufort, F., Quezada-Gallo, J.A., Voilley, A.: Edible films and coatings: tomorrow’s packagings: a review. Crit. Rev. Food Sci. 38(4), 299–313 (1998)

    CAS  Google Scholar 

  110. Hernandez-Izquierdo, V.M., Krochta, J.M.: Thermal transitions and heat-sealing of glycerol-plasticized whey protein films. Packag. Technol. Sci. 22, 255–260 (2009)

    CAS  Google Scholar 

  111. Perez-Gago, M.B., Serra, M., Alonso, M., Mateos, M., del RÍo, M.A.: Effect of solid content and lipid content of whey protein isolate-beeswax edible coatings on color change of fresh-cut apples. J. Food Sci. 68(7), 2186–2191 (2003)

    CAS  Google Scholar 

  112. Perez-Gago, M.B., Serra, M., Alonso, M., Mateos, M., del RÍo, M.A.: Effect of whey protein- and hydroxypropyl methylcellulose-based edible composite coatings on color change of fresh-cut apples. Postharvest Biol. Technol. 36, 77–85 (2005)

    CAS  Google Scholar 

  113. Perez-Gago, M.B., Serra, M., del RÍo, M.A.: Color change of fresh-cut apples coated with whey protein concentrate-based edible coatings. Postharvest Biol. Technol. 39, 84–92 (2006)

    CAS  Google Scholar 

  114. Hong, S.-I., Krochta, J.M.: Whey protein isolate coating on LDPE film as a novel oxygen barrier in the composite structure. Packag. Sci. Technol. 17, 13–21 (2004)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashkan Madadlou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Madadlou, A., Azarikia, F. (2013). Nanocarriers, Films and Composites Based on Milk Proteins. In: Thomas, S., Visakh, P., Mathew, A. (eds) Advances in Natural Polymers. Advanced Structured Materials, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20940-6_6

Download citation

Publish with us

Policies and ethics