Skip to main content

Polyhydroxyalkanoates: The Natural Polymers Produced by Bacterial Fermentation

  • Chapter
  • First Online:
Advances in Natural Polymers

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 18))

Abstract

Polymers are mainly divided into two groups, natural polymers, such as proteins, cellulose, silk and synthetic polymers, such as polystyrene, polyethylene, and nylon. In some cases, naturally occurring polymers can also be produced synthetically. An important example is natural rubber which is known as polyisoprene in its synthetic form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langstaff, E., Ostrum, G.: Access to polymer information in chemical abstracts. J. Chem. Inf. Comput. Sci. 19, 60–64 (1979)

    Article  CAS  Google Scholar 

  2. Abou-Zeid, D.M.: Anaerobic biodegradation of natural and synthetic polyesters. Dissertation, Technische Universität Carolo-Wilhelmina zu Braunschweig, Germany (2001)

    Google Scholar 

  3. Zinn, M., Witholt, B., Egli, T.: Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoates. Adv. Drug Deliv. Rev. 53(1), 5–21 (2001)

    Article  CAS  Google Scholar 

  4. Philip, S., Keshavarz, T., Roy, I.: Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J. Chem. Technol. Biotechnol. 82, 233–247 (2007)

    Article  CAS  Google Scholar 

  5. Keshavarz, T., Roy, I.: Polyhydroxyalkanoates: bioplastics with a green agenda. Curr. Opin. Microbiol. 13, 321–326 (2010)

    Article  CAS  Google Scholar 

  6. Du, G., Si, Y., Yu, J.: Inhibitory effects of medium-chain-length fatty acid on synthesis of polyhydroxyalkanoates from volatile fatty acid by Ralstonia eutrophus. Biotechnol. Lett. 23, 1613–1617 (2001)

    Article  CAS  Google Scholar 

  7. Salehizadeh, H., Van Loosdrecht, M.: Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechnological importance. Biotechnol. Adv. 22, 261–279 (2004)

    Article  CAS  Google Scholar 

  8. Stock, U., Sakamoto, T., Hastuoka, S., Martin, D., Nagashima, M., Moran, A., Moses, M., Khalil, P., Schoen, F., Vacanti, J., Mayer, J.: Patch augmentation of the pulmonary artery with bioabsorbable polymers and autologous cell seeding. J. Thorac. Cardiovasc. Surg. 120, 1158–1168 (2000)

    Article  CAS  Google Scholar 

  9. Valappil, S., Misra, S., Boccaccini, A., Roy, I.: Biomedical applications of polyhydroxyalkanoates, an overview of animal testing and in vivo responses. Expert Rev. Med. Devices 3(6), 853–868 (2006)

    Article  CAS  Google Scholar 

  10. Jurasek, L., Marchessault, R.: Polyhydroxyalkanoate (PHA) granule formation in Ralstonia. Appl. Microbiol. Biotechnol. 64, 611–617 (2004)

    Article  CAS  Google Scholar 

  11. Byrom, D.: Polyhydroxyalkanoates. In: Mobley, D.P.(ed.) Plastic from Microbes: Microbial Synthesis of Polymers and Polymer precursors, pp. 5–33. Hanser Munich (1994)

    Google Scholar 

  12. Volova, T.: Properties in polyhydroxyalkanoates-plastic materials of the 21st century: production, properties, applications, pp. 79–95. Nova Science Publishers, New York (2004)

    Google Scholar 

  13. Ojumu, T., Yu, J., Solomon, B.: Production of polyhydroxyalkanoates, a bacterial biodegradable polymer. Afr. J. Biotechnol. 43, 18–24 (2004)

    Google Scholar 

  14. Chen, G.: Plastics completely synthesized by bacteria: polyhydroxyalkanoates. Microbiol. Monogr. 14, 17–37 (2010)

    Article  Google Scholar 

  15. Zinn, M., Hanry, R.: Tailored material properties of polyhydroxyalkanoates through biosynthesis and chemical modification. Adv. Eng. Mater. 7, 408–441 (2005)

    Article  CAS  Google Scholar 

  16. Rehm, B.H.A., Steinbüchel, A.: PHA synthases—the key enzymes of PHA synthesis. In: Steinbüchel, A., Doi, Y. (eds.) “Biopolymers”, (Polyesters I), vol. 3a, pp. 173–215. Wiley, Heidelberg (2001)

    Google Scholar 

  17. Saad, B., Neuenschwander, P., Uhlschmid, G., Suter, U.: New versatile, elastomeric, degradable polymeric materials for medicine. Int. J. Biol. Macromol. 25, 293–301 (1999)

    Article  CAS  Google Scholar 

  18. Witholt, B., Kessler, B.: Perspectives of medium chain length poly(hydroxyalkanoates), a versatile set of bacterial bioplastics. Curr. Opin. Biotechnol. 10, 279–285 (1999)

    Article  CAS  Google Scholar 

  19. Nomura, C., Tanaka, T., Gan, Z., Kuwabara, K., Abe, H., Takase, K., Taguchi, K., Doi, Y.: Effective enhancement of short-chain-length-medium-chain-length polyhydroxyalkanoate copolymer production by coexpression of genetically engineered 3-ketoacyl-acyl-carrier-protein synthase III (fabH) and polyhydroxyalkanoate synthesis genes. Biomacromolecules 5(4), 1457–1464 (2004)

    Article  CAS  Google Scholar 

  20. El-Hadi, A., Schnabel, R., Straube, E., Müller, G., Henning, S.: Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly (3-hydroxyalkanoate) PHAs and their blends. Polym. Test. 21, 665–674 (2002)

    Article  CAS  Google Scholar 

  21. Conti, D., Pezzin, S., Coelho, L.: Mechanical and morphological properties of poly(3-hydroxybutyrate)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Blends. Macromol. Symp. 245–246, 491–500 (2006)

    Article  Google Scholar 

  22. Akaraonye, E., Keshavraz, T., Roy, I.: Production of polyhydroxyalkanoates: the future green materials of choice. J. Chem. Technol. Biotechnol. 85, 732–743 (2010)

    Article  CAS  Google Scholar 

  23. Rai, R., Yunos, D., Boccaccini, A., Knowles, J., Barker, I., Howdle, S., Tredwell, G., Keshavarz, T., Roy, I.: Poly-3-hydroxyoctanoate P(3HO), a medium chain length polyhydroxyalkanoate homopolymer from Pseudomonas mendocina. 13;12(6), 2126–2136 (2010)

    Google Scholar 

  24. Kim, D.Y., Kim, H.W., Chung, M.G., Rhee, Y.H.: Biosynthesis, modification, and biodegradation of bacterial medium-chain-length polyhydroxyalkanoates. J. Microbiol. 45(2), 87–97 (2007)

    Google Scholar 

  25. Doi, Y., Abe, C.: Biosynthesis and characterization of a new bacterial copolyester of 3-hydroxyalkanoates and 3-hydroxy-ω-chloroalkanoates. Macromolecules 23, 3705–3707 (1990)

    Article  CAS  Google Scholar 

  26. Poirier, Y., Nawrath, C., Somerville, C.: Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers in bacterial and plant. Biotechnol 13, 142–150 (1995)

    Article  CAS  Google Scholar 

  27. Steinbüchel, A.: Polyhydroxyalkanoic acids. Biomaterials: novel materials from biological sources, pp. 124–213. Stockton, New York (1991)

    Google Scholar 

  28. Kazunori, T., Takeharu, T., Ken’ichiro, M., Sumiko, N., Seiichi, T., Yoshiharu, D.: Investigation of metabolic pathways for biopolyester production. Ecomolecular Sci.Res. 42, 71–74 (2001)

    Google Scholar 

  29. Huisman, G., Leeuw, O., Eggink, G., Witholt, B.: Synthesis of poly-3-hydroxyalkanoates is a common feature of fluorescent pseudomonads. Appl. Environ. Microbiol. 55, 1949–1954 (1989)

    CAS  Google Scholar 

  30. Rehm, B.: Biogenesis of microbial polyhydroxyalkanoate granules: a platform technology for the production of tailor-made bioparticles. Curr. Issues Mol. Biol. 9, 41–62 (2007)

    CAS  Google Scholar 

  31. Bohmert, K., Balbo, I., Tischendorf, G., Steinbuchel, A., Willmitzer, L.: Constitutive expression of the beta- ketothiolase gene in transgenic plants. A major obstacle for obtaining polyhydroxybutyrate-producing plants. Plant Physiol. 128, 1282–1290 (2002)

    Article  CAS  Google Scholar 

  32. Steinbuchel, A., Lutke-Eversloh, T.: Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem. Eng. J. 16, 81–96 (2003)

    Article  CAS  Google Scholar 

  33. Verlinden, R., Hill, D., Kenward, M., Williams, C., Radecka, I.: Bacterial synthesis of biodegradable polyhydroxyalkanoates. J. Appl. Microbiol. 102, 1437–1449 (2007)

    Article  CAS  Google Scholar 

  34. Poirier, Y.: Polyhydroxyalknoate synthesis in plants as a tool for biotechnology and basic studies of lipid metabolism. Prog. Lipid Res. 41, 131–155 (2002)

    Article  CAS  Google Scholar 

  35. Shang, L., Jiang, M., Chang, H.: Poly(3-hydroxybutyrate) synthesis in fed-batch culture of Ralstonia eutropha with phosphate limitation under different glucose concentrations. Biotechnol. Lett. 25, 1415–1419 (2003)

    Article  CAS  Google Scholar 

  36. Vandamme, P., Coenye, T.: Taxonomy of the genus Cupriavidus: a tale of lost and found. Int. J. Syst. Evol. Microbiol. 54, 2285–2289 (2004)

    Article  Google Scholar 

  37. Vaneechoutte, M., Kampfer, P., De Baere, T., Falsen, E., Verschraegen, G.: Wautersia gen. nov., a novel genus accommodating the phylogenetic lineage including Ralstonia eutropha and related species, and proposal of Ralstonia [Pseudomonas] syzygii (Roberts et al. 1990) comb. nov. Int. J. Syst. Evol. Microbiol. 54, 317–327 (2004)

    Article  Google Scholar 

  38. Labuzek, S., Radecka, I.: Biosynthesis of copolymers of PHB tercopolymer by Bacillus cereus UW85 strain. J. Appl. Microbiol. 90, 353–357 (2001)

    Article  CAS  Google Scholar 

  39. Valappil, S., Peiris, D., Langley, G., Herniman, J., Boccaccini, A., Bucke, C., Roy, I.: Polyhydroxyalkanoates (PHA) biosynthesis from structurally unrelated carbon sources by a newly characterised Bacillus spp. J. Biotechnol. 127, 475–487 (2007)

    Article  CAS  Google Scholar 

  40. Valappil, S., Rai, R., Bucke, C., Roy, I.: Polyhydroxyalkanoate biosynthesis in Bacillus cereus SPV under varied limiting conditions and an insight into the biosynthetic genes involved. J. Appl. Microbiol. 104, 1624–1635 (2008)

    Article  CAS  Google Scholar 

  41. Park, S., Choi, J., Lee, S.: Engineering of Escherichia coli fatty acid metabolism for the production of polyhydroxyalkanoates. Enzyme Microb. Technol. 36, 579–588 (2005)

    Article  CAS  Google Scholar 

  42. Kahar, P., Agus, J., Kikkawa, Y., Taguchi, K., Doi, Y., Tsuge, T.: Effective production and kinetic characterization of ultra-high-molecular-weight poly (R)- 3-hydroxybutyrate in recombinant Escherichia coli. Polym. Degrad. Stab. 87, 161–169 (2005)

    Article  CAS  Google Scholar 

  43. Du, G., Chen, J., Yu, J., Lun, S.: Continuous production of poly-3- hydroxybutyrate by Ralstonia eutrophus in a two-stage culture system. J. Biotechnol. 88, 59–65 (2001)

    Article  CAS  Google Scholar 

  44. Du, G., Yu, J.: Green technology for conversion of food scraps to biodegradable thermoplastic polyhydroxyalkanoates. Environ. Sci. Technol. 36, 5511–5516 (2002)

    Article  CAS  Google Scholar 

  45. Yu, J.: Production of PHA from starch wastewater via organic acids. J. Biotechnol. 86, 105–112 (2001)

    Article  CAS  Google Scholar 

  46. Yu, J., Wang, J.: Metabolic flux modelling of detoxification of acetic acid by Ralstonia eutrophus at slightly alkaline pH levels. Biotechnol. Bioeng. 73, 458–464 (2001)

    Article  CAS  Google Scholar 

  47. Bhubalan, K., Lee, W., Loo, C., Yamamoto, T., Doi, Y., Sudesh, K.: Controlled biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3- hydroxyhexanoate) from mixtures of palm kernel oil and 3HV-precursors. Polym. Degrad. Stab. 93, 17–23 (2007)

    Article  Google Scholar 

  48. Reddy, C., Ghai, R., Rashmi Kalia, V.: Polyhydroxyalkanoates: an overview. Bioresour. Technol. 87, 137–146 (2003)

    Article  CAS  Google Scholar 

  49. Madison, L., Huisman, G.: Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol. Mol. Biol. Rev. 63, 21–53 (1999)

    CAS  Google Scholar 

  50. Taguchi, S., Doi, Y.: Evolution of polyhydroxyalkanoate (PHA) production system by “enzyme evolution”: successful case studies of directed evolution. Macromol. Biosci. 4, 145–156 (2004)

    Article  CAS  Google Scholar 

  51. Long, Y., Katherine, D., Lin, L.: Polymer blends and composites from renewable resources. Prog. Polym. Sci. 31, 576–602 (2006)

    Article  Google Scholar 

  52. Shanks, R., Hodzic, A., Wong, S.: Thermoplastic biopolyester natural fiber composites. J. Appl. Polym. Sci. 91(4), 2114–2121 (2004)

    Article  CAS  Google Scholar 

  53. Wong, S., Shanks, R., Hodzic, A.: Properties of poly(3-hydroxybutyric acid) composites with flax fibres modified by plasticiser absorption. Macromol. Mater. Eng. 287, 647–655 (2002)

    CAS  Google Scholar 

  54. Al-Salihi, K., Samsudin, A.: Coral-polyhydroxybutrate composite scaffold for tissue engineering: prefabrication properties. Med. J. Malaysia. 59(Suppl. B), 202–203 (2004)

    Google Scholar 

  55. Chen, L., Wang, M.: Production and evaluation of biodegradable composites based on PHB–PHV copolymer. Biomaterials 23, 2631–2639 (2002)

    Article  CAS  Google Scholar 

  56. Luklinska, Z., Bonfield, W.: Morphology and ultrastructure of the interface between hydroxyapatite-polyhydroxybutyrate composite implant and bone. J. Mater. Sci-Mater. M. 8, 379–383 (1997)

    Article  CAS  Google Scholar 

  57. Ni, J., Wang, M.: In vitro evaluation of hydroxyapatite reinforced polyhydroxybutyrate composite. Mater. Sci. Eng. C-Bio. S. 20, 101–109 (2002)

    Article  Google Scholar 

  58. Knowles, J., Hastings, G., Ohta, H., Niwa, S., Boeree, N.: Development of a degradable composite for orthopaedic use: in vivo biomechanical and histological evaluation of two bioactive degradable composites based on the polyhydroxybutyrate polymer. Biomaterials 13, 491–496 (1992)

    Article  CAS  Google Scholar 

  59. Galego, N., Rozsa, C., Sanchez, R., Fung, J., Vazquez, A., Tomas, J.S.: Characterization and application of poly(b-hydroxyalkanoates) family as composite biomaterials. Polym. Test. 19, 485–492 (2000)

    Article  CAS  Google Scholar 

  60. Luklinska, Z., Schluckwerder, H.: In vivo response to HApolyhydroxybutyrate/polyhydroxyvalerate composite. J. Microsc-Oxford. 211, 121–129 (2003)

    Article  CAS  Google Scholar 

  61. Kose, G., Ber, S., Korkusuk, F., Hasirci, V.: Poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) based tissue engineering matrices. J. Mater. Sci-Mater. M. 14, 121–126 (2003)

    Article  CAS  Google Scholar 

  62. Kose, G., Korkusuz, F., Korkusuz, P., Hasirci, V.: In vivo tissue engineering of bone using poly(3-hydroxybutyric acid-co-3- hydroxyvaleric acid) and collagen scaffolds. Tissue Eng. 10, 1234–1250 (2004)

    Google Scholar 

  63. Kose, G., Korkusuz, F., Korkusuz, P., Purali, N., Ozkul, A., Hasirci, V.: Bone generation on PHBV matrices: an in vitro study. Biomaterials 24, 4999–5007 (2003)

    Article  CAS  Google Scholar 

  64. Zheng, Y., Wang, Y., Chen, X., Ren, Y., Wu, G.: Chemical reaction of PHBV/sol–gel bioglass foams for born tissue engineering in simulated body fluid. Chem. J. Chin. U. 24, 1325–1328 (2003)

    CAS  Google Scholar 

  65. Martin, O., Schwach, E., Averous, L., Couturier, Y.: Properties of biodegradable multilayer films based on plasticised wheat starch. Starch 53, 372–380 (2001)

    Article  CAS  Google Scholar 

  66. Avella, M., Rota, G., Martuscelli, E., Raimo, M., Sadocco, P.: Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and wheat straw fibre composites: thermal, mechanical properties and biodegradation behaviour. J. Mater. Sci. 35, 829–836 (2000)

    Article  CAS  Google Scholar 

  67. Eidelman, N.: Characterization of combinatorial polymer blend composition gradients by FTIR microspectroscopy. J. Res. Natl. Inst. Stand. Technol. 109, 219–231 (2004)

    Article  CAS  Google Scholar 

  68. Renard, E., Walls, M., Guérin, P., Langlois, V.: Hydrolytic degradation of blends of polyhydroxyalkanoates and functionalized polyhydroxyalkanoates. Polym. Degrad. stab. 85(2), 779–787 (2004)

    Article  CAS  Google Scholar 

  69. Padermshoke, A., Katsumoto, Y., Harumi, S., Ekgasit, S., Noda, I., Ozaki, Y.: Melting behavior of poly(3-hydroxybutyrate) investigated by two-dimensional infrared correlation spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 61, 541–550 (2005)

    Article  Google Scholar 

  70. Ha, C., Cho, W.: Miscibility, properties, and biodegradability of microbial polyester containing blends. Prog. Polym. Sci. 27(4), 759–809 (2002)

    Article  CAS  Google Scholar 

  71. Satoh, H., Yoshie, N., Inoue, Y.: Hydrolytic degradation of blends of poly(3-hydroxybutyrate) with poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Polymer 35(2), 286–290 (1994)

    Article  CAS  Google Scholar 

  72. Avella, M., Martuscelli, E.: Poly-d(-)(3-hydroxybutyrate)/poly(ethylene oxide) blends: phase diagram, thermal and crystallization behavior. Polymer 29(10), 1731–1737 (1988)

    Article  CAS  Google Scholar 

  73. Avella, M., Martuscelli, E., Greco, P.: Crystallization behaviour of poly(ethylene oxide) from poly(3-hydroxybutyrate)/poly(ethylene oxide) blends: phase structuring, morphology and thermal behaviour. Polymer 32(9), 1647–1653 (1991)

    Article  CAS  Google Scholar 

  74. Peoples, O., Snell, K.: Progress on plant based PHA production systems. In: International symposium on biological polyesters. minneapolis, Minnesota, US (2006)

    Google Scholar 

  75. Babu, R., Woods, T.: Polymer blends with improved mechanical properties. Society of plastics engineers. Plastics research online, pp. 1–2 (2011)

    Google Scholar 

  76. Premraj, M., Doble, M.: Biodegradation of polymers. Indian J. Biotechnol. 4, 186–193 (2005)

    CAS  Google Scholar 

  77. Sivalingam, G., Karthik, R., Madras, G.: Blends of poly(ε-caprolactone) and poly(vinyl acetate): mechanical properties and thermal degradation. Polym. Degrad. Stab. 84(2), 345–351 (2004)

    Article  CAS  Google Scholar 

  78. Ren, Q., Grubelnik, A., Ruth, K., Hoerler, M., Hartmann, R., Felber, H.: Bacterial poly(hydroxyalkanoates) as a source of chiral hydroxyalkanoic acids. Biomacromol 6, 2290–2298 (2005)

    Article  CAS  Google Scholar 

  79. Rehm, R.: Genetics and biochemistry of polyhydroxyalkanoate granule self-assembly: the key role of poly-ester synthases. Biotechnol. Lett. 28, 207–213 (2006)

    Article  CAS  Google Scholar 

  80. Clarinval, A., Halleux, J.: Classification of biodegradable polymers, in biodegradable polymers for industrial applications. In: Smith, R. (ed.) CRC. pp. 3–56. Fl, USA (2005)

    Google Scholar 

  81. Chen, G.: Polyhydroxyalkanoates, in biodegradable polymers for industrial applications. In: Smith, R. (ed.) CRC. pp. 32–56. Fl, USA (2005)

    Google Scholar 

  82. Scholz, C.: Poly(β-hydroxyalkanoates) as potential biomedical materials: an overview. In: Scholz, C., Gross, R.A. (eds.) Polymers from renewable resources–biopolymers and biocatalysis, ACS series, vol. 764, pp. 328–334 (2000)

    Google Scholar 

  83. Steinbuchel, A.: Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathway as a successful example. Macromol. Biosci. 1, 1–24 (2001)

    Article  CAS  Google Scholar 

  84. Kofidis, T., Akhyari, P., Wachsmann, B.: A novel bioartificial myocardial tissue and its perspective use in cardiac surgery. Eur. J. Card. Thorac. Surg. 22, 238–243 (2002)

    Article  Google Scholar 

  85. Morosco, G.: Conquering heart disease: a call to action. Prev. Cardiol. 5, 31–36 (2002)

    Article  Google Scholar 

  86. Smaill, B., Mcfin, D., LeGrice, I.: The effect of synthetic patch repair of coarctation on regional deformation of the aortic wall. J. Thorac. Cardiovasc. Surg. 120, 1053–1063 (2000)

    Article  CAS  Google Scholar 

  87. Williams, S., Martin, D.: Applications of PHAs in medicine and pharmacy. Medicine 4, 1–38 (1996)

    Google Scholar 

  88. Stock, U., Nagashima, M., Khalil, P., Nollert, G., Herden, T., Sperling, J., Moran, A., Lien, J., Martin, D., Schoen, F., Vacanti, J., Mayer, J.: Tissue engineered valved conduits in the pulmonary circulation. J. Thorac. Cardiovasc. Surg. 119, 732–740 (2000)

    Article  CAS  Google Scholar 

  89. Yang, F., Murugan, R., Wang, S., Ramakrishna, S.: Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibersand their potential in neural tissue engineering. Biomaterials 26, 2603–2610 (2005)

    Article  CAS  Google Scholar 

  90. Yang, Y., De Laporte, L., Rives, C., Jang, J., Lin, W., Shull, K., Shea, L.: Neurotrophin releasing single and multiple lumen nerve conduits. J. Controlled Release 104, 433–446 (2005)

    Article  CAS  Google Scholar 

  91. Schmidt, C., Leach, J.: Neural tissue engineering: strategies for repair and regeneration. Rev. Biomed. Eng. 5, 293–347 (2003)

    Article  CAS  Google Scholar 

  92. Hazari, A., Johansson, R., Junemo, B.: A new resorbable wrap around implant as alternative nerve repair technique. J. Hand. Surg. 24, 291–295 (1999)

    CAS  Google Scholar 

  93. Hazari, A., Wiberg, M., Johansson, R., Green, C., Terenghi, G.: A resorbable nerve conduit as an alternative to nerve autograft in nerve gap repair. Br. J. Plast. Surg. 52, 653–657 (1999)

    Article  CAS  Google Scholar 

  94. Novikov, L., Novikova, L., Mosahebi, A., Wiberg, M., Terenghi, G., Kellerth, J.: A novel biodegradable implant for neuronal rescue and regeneration after spinal cord injury. Biomaterials 23, 3369–3376 (2002)

    Article  CAS  Google Scholar 

  95. Opitz, F., Schenke-Layland, K., Richter, W.: Tissue engineering of ovine aortic blood vessel substitutes using applied shear stress and enzymatically derived vascular smooth muscle cells. Ann. Biomed. Eng. 32, 212–222 (2004)

    Article  CAS  Google Scholar 

  96. Maquet, V., Martin, D., Malgrange, B., Franzen, R., Schoenen, J., Moonen, G., Jerome, R.: Peripheral nerve regeneration using bioresorbable macroporous polylactide scaffolds. J. Biomed. Mater. Res. 52, 639–651 (2000)

    Article  CAS  Google Scholar 

  97. Ding, B., Wang, M., Wang, X., Yu, J., Sun, G.: Electrospun nanomaterials for ultrasensitive sensors. Mater. Today 13(11), 16–27 (2010)

    Article  CAS  Google Scholar 

  98. Queen, H., Master thesis. Electrospinning chitosan-based nanofibers for biomedical applications. North Carolina state University (2006)

    Google Scholar 

  99. Vondran, J., Rodriguez, M., Schauer, C., Sun, W.: Preparation of electrospun chitosan-PEO fibers in bioengineering conference. Proceedings of the IEEE 32nd annual Northeast, pp 87–88. (2006)

    Google Scholar 

  100. Bo-Yi, Y., Chi-Ruei, C., Yi-Ming, S., Tai-Horng, Y.: The response of rat cerebellar granule neurons (rCGNs) to various polyhydroxyalkanoate (PHA) films. Desalination 245, 639–646 (2009)

    Article  Google Scholar 

  101. Chanprateep, S.: Current trends sin biodegradable polyhydroxyalkanoates. J. Biosci. Bioeng. 110(6), 621–632 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ipsita Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Panchal, B., Bagdadi, A., Roy, I. (2013). Polyhydroxyalkanoates: The Natural Polymers Produced by Bacterial Fermentation. In: Thomas, S., Visakh, P., Mathew, A. (eds) Advances in Natural Polymers. Advanced Structured Materials, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20940-6_12

Download citation

Publish with us

Policies and ethics