Rubber/Thermoplastic Blends: Micro and Nano Structured

Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 11)

Abstract

Research on recycling, scarcely visible only a few decades ago, is now a very active, fastgrowing discipline, particularly focusing on wastes re-use as second raw materials. This chapter presents an overview on the state-of- art in recycling, the most recent technologies, and recent developments. Rubber and PET are the most frequently recycled polymers, and are particularly addressed to within this chapter. Recent results are presented on rubber/thermoplastic-based micro/nano blends, along with their manufacturing and characterization methods. There are described methods to obtain the rubber-PET composites, based on ground discarded tires as a matrix composites, using as fillers plastic materials (PET, HDPE, and LDPE) and inorganic oxides (CaO, ZnO, and fly ash). Based on the structural and output properties and the chapter outlines the role of various components in the polymer composites. It is demonstrated that inorganic materials in the polymer composites allow obtaining performances unrecorded by pure polymer composites. However, the control of the inorganic material (type, quantity, particle size, and molecular structure) dispersed in polymeric matrix is essential in achieving the expected performance. Using different recipes, the composites can be tailored for various indoor and outdoor applications, as building materials as paving slabs, as thermal and electrical insulators, etc.

References

  1. 1.
    Rosato, D., Plastics Processing Data Handbook, Springer, (1997)Google Scholar
  2. 2.
    Callister, D., Materials science and enginnering an introduction, 7th ed., John Willy & Sons, Inc., 2007Google Scholar
  3. 3.
    Challa, G.: Polymer chemistry: An introduction. By Ellis Horwood, London (1993)Google Scholar
  4. 4.
    Liu H.S., Richard C.P., Mead J.L., Stacer R.G., Development of novel applications for using recycled rubber in thermoplastics. Technical report 18, Chelsea Center for Recycling and Economic Development, Massachusetts, USA, 2000Google Scholar
  5. 5.
    Pramanik, P.K., Baker, W.E.: Toughening of ground rubber tire filled thermoplastic compounds using different compatibilizer systems. Plast. Rubber Compos. Process. Appl. 24(4), 229–237 (1995)Google Scholar
  6. 6.
    Scaffaro, R.: Effect of adding new phosphazene compounds to poly(butylene terephthalate)/polyamide blends I: preliminary study in a batch mixer. Polym. Degrad. Stab 90(2), 234–243 (2005)CrossRefGoogle Scholar
  7. 7.
    De, S.K., Bhowmick, A.K.: Thermoplastic Elastomers from Rubber Plastic Blends. Horwood, London (1990)Google Scholar
  8. 8.
    Walker, B.M., Rader, C.P.: Handbook of Thermoplastic Elastomers. Van Nostrand Reinhold, New York (1988)CrossRefGoogle Scholar
  9. 9.
    Jha, A., Bhowmick, K.: Rubber Chem. Technol 70, 798–814 (1997)CrossRefGoogle Scholar
  10. 10.
    ASTM D 5593 – 99: “Standard Classification for Thermoplastic Elastomers-Olefinic (TEO)”Google Scholar
  11. 11.
    ASTM D 5046 – 98: “Standard specification for Fully Crosslinked Elastomeric Alloys”Google Scholar
  12. 12.
    Wang, W., Wu, Q., Qu, B.: Polym. Eng. Sci. 43, 1798–1805 (2003)CrossRefGoogle Scholar
  13. 13.
    Manoj, K.C., Unnikrishnan, G.: J. Appl. Polym. Sci. 105, 908–914 (2007)CrossRefGoogle Scholar
  14. 14.
    Sadek, E.M., El-Nashar, D.E., Motawie, A.M.: Polymer-Plastics Technology and Engineering 42, 627–642 (2003)CrossRefGoogle Scholar
  15. 15.
    Legge, N.R., Holden, G., Schroeder, H.E.: Thermoplastic Elastomers: A comprehensiveReview. Hanser Publishers, Munich (1987)Google Scholar
  16. 16.
    De, S.K., Bhowmick, A.K. (eds.): Thermoplastic Elastomers from Rubber- Plastic Blends. Ellis Horwood Ltd, London (1990)Google Scholar
  17. 17.
    Abdou-Sabet, S., Fifty years of thermoplastic elastomer Innovations, presented at the Symposium on Thermoplastic Elastomers, ACS Rubber Division Meeting: Cincinnati. OH, USA (2000)Google Scholar
  18. 18.
    Sadhan, K.De., Avraam, I.I., Klementina, K., Rubber recyling, New York: CRC Press, 2005Google Scholar
  19. 19.
    Xanthos, M., Dagli, S.S.: Compatibilization of polymer blends by reactive processing. Polym. Eng. Sci 31, 929–935 (1991)CrossRefGoogle Scholar
  20. 20.
    Deanin, R.D., Manion, M.A.: Handbook of Polyolefines, 2nd edn. Marcel Dekker Inc, New York, USA (2000)Google Scholar
  21. 21.
    Deanin, R.D., Manion, M.A.: Compatibilization of Polymer Blends. Marcel Dekker, Inc, New York (1999)Google Scholar
  22. 22.
    Alexandre, M., Dubois, P.: Polymer-layered Silicate Nanocomposites: Preparation, Properties and Uses of a New Class of Materials. Mat. Sci. Eng 12, 1–63 (2000)CrossRefGoogle Scholar
  23. 23.
    Abdou-Sabet, S., Patel, R.P.: Morphology of elastomeric alloys. Rubber Chem. Technol 64, 729–769 (1991)CrossRefGoogle Scholar
  24. 24.
    Feng, W., Isayev, A.I.: In-situ Ultrasonic Compatibilization of PP/EPDM Blends during Ultrasound Aided Extrusion. Polymer 45, 1207–1216 (2004)CrossRefGoogle Scholar
  25. 25.
    Xiao, H.W., Huang, ShQ, Jiang, T.: Cheng ShY. Miscibility of blends of ethylene-propylenediene terpolymer and polypropylene, J Appl Polym Sci 83, 315–322 (2002)CrossRefGoogle Scholar
  26. 26.
    Nakason, C., Jarnthong, M., Kaesaman, A., Kiatkamjornwong, A.: Thermoplastic elastomers based on epoxidized natural rubber and high-density polyethylene blends: Effect of blend compatibilizers on the mechanical and morphological. J. Appl. Polym. Sci 109, 2694–2702 (2008)CrossRefGoogle Scholar
  27. 27.
    Supri, M., Ismail, H.: Effects of Dynamic Vulcanization and Glycidyl Methacrylate on Properties of rPVC/NBR blends. Polym. Testing 25, 318–326 (2006)CrossRefGoogle Scholar
  28. 28.
    Hope, P.S., Bonner, J.G., Milles, A.F.: Plastics. Rubber and Composites Processing and Applications 22, 147–158 (1994)Google Scholar
  29. 29.
    Papke, N., Karger-Kocsis, J.: Thermoplastic elastomers based on compatibilized poly(ethylene terephthalate) blends: effect of rubber type and dynamic curing. Polymer 42, 1109–1120 (2001)CrossRefGoogle Scholar
  30. 30.
    Papadopoulou, C.P., Kalfoglou, N.K.: Comparison of compatibilizer effectiveness for PET/PP blends: their mechanical, thermal and morphology characterization. Polymer 41, 2543–2555 (2000)CrossRefGoogle Scholar
  31. 31.
    Aravind, P.A., Ranganathaiah, C., Kurian, J.V., Thomas, S.: Compatibilizing effect of EPM-g-MA in EPDM/poly(trimethylene terephthalate) incompatible blends. Polymer 45, 4925–4937 (2004)CrossRefGoogle Scholar
  32. 32.
    Henderson, A.M.: IEEE Electr. Insul. Mag. 9, 30 (1993)CrossRefGoogle Scholar
  33. 33.
    Mohamad, Z., Ismail, H., Chantara, R.: Characterization of epoxidized natural rubber/ethylene vinyl acetate (ENR-50/EVA) blend: Effect of blend ratio. J. Appl. Polym. Sci. 99, 1504–1515 (2006)CrossRefGoogle Scholar
  34. 34.
    Klinklai, W., Kunyawut, C.: Preparation of thermoplastics elastomer between natural rubber and poly(lactic acid) in the presence of epoxidized natural rubber, pp. 23–29. International Conference on the Role of Universities in Hands-On Education Rajamangala University of Technology Lanna, Chiang-Mai, Thailand (2009)Google Scholar
  35. 35.
    Ismail, H., Supri, M., Yusof, A.M.: Polym. Testing 23, 675 (2004)CrossRefGoogle Scholar
  36. 36.
    Soares, B.G., Almeida, M.S.M., Guimaraes, P.I.C.: The reactive compatibilization of NBR/EVA blends with oxazoline-modified nitrile rubber. Eur. Polymer J. 40, 2185–2194 (2004)CrossRefGoogle Scholar
  37. 37.
    Bonnin, E., Thibault, J.-F., Jansen, P., Soares, B.G.: Effect of compatibilizer and curing system on the thermal degradation of natural rubber/EVA copolymer blends. Polym. Degrad. Stab 52, 95–99 (1996)CrossRefGoogle Scholar
  38. 38.
    Macaubas, P.H.P., Demarquette, N.R.: Morphologies and Interfacial tension of immiscible polypropylene/polystyrene blends modified with triblock copolymer. Polymer 42, 2543–2554 (2001)CrossRefGoogle Scholar
  39. 39.
    Chen, J.S., Liao, M.C., Shiah, M.S.: Asphalt modified by styrene-butadiene-styrene triblock copolymer: morphology and model. J. Mater. Civ. Eng. 143, 224–229 (2002)CrossRefGoogle Scholar
  40. 40.
    Kim, D.H., Fasulo, P.D., Rodgers, W.R., Paul, D.R. Effect of the ratio of maleated polypropylene to organoclay on the structure and properties of TPO-based nanocomposites. Part I: Morphology and mechanical properties, Polymer 48 (2007) 5960e5978Google Scholar
  41. 41.
    Silva, S.M.L., López-Manchado, M.A., Arroyo, M.: Thermoplastic Olefin/Clay Nanocomposites. Effect of Matrix Composition, and Organoclay and Compatibilizer Structure on Morphology/Properties Relationships, Journal of Nanoscience and Nanotechnology 7, 4456–4464 (2007)CrossRefGoogle Scholar
  42. 42.
    Mirzadeh, A., Lafleur, P.G., Kamal, M.R., Dubois, C., Co-continuity of thermoplastic elastomer rubber-based nanocomposites, Society of Plastics Engineers (SPE), 10.1002/spepro.002992, 2010
  43. 43.
    Mahallati, P., Arefazar, A., Naderi, G.: Thermoplastic elastomer nanocomposites based on PA6/NBR. Int. Polym. Proc. 25, 132–138 (2010)CrossRefGoogle Scholar
  44. 44.
    Ganguly, A., Bhowmick, A.K.: Quantification of surface forces of thermoplastic elastomeric nanocomposites based on poly(styrene-ethylene-co-butylene-styrene) and clay by atomic force microscopy. J. Appl. Polym. Sci. 111, 2104–2115 (2009)CrossRefGoogle Scholar
  45. 45.
    Nishitani, Y., Naito, T., Sekiguchi, I., Kitano, T., Effect of addition of thermoplastic elastomers on tribological anti mechanical properties of vapor grown carbon filled polybutylene terephthalate composites, World Tribology Congress 2009 - Proceedings, 2009, 421Google Scholar
  46. 46.
    Nakason, C., Nuansomsri, K., Kaesaman, A.: Dynamic vulcanization of natural rubber/high-density polyethylene blends: Effect of compatibilization, blend ratio and curing system. Polym. Testing 25, 782–796 (2006)CrossRefGoogle Scholar
  47. 47.
    Bhowmick, A.K.: Stephens. H.L, Handbook of Elastomers, Second Edition (2001)Google Scholar
  48. 48.
    Machado, A.V., Van Duin, M.: Dynamic vulcanization of EPDM/PE-based thermoplastic vulcanisates studied along the extruder axis, polymer 46, 6575–6586 (2005)Google Scholar
  49. 49.
    Bhowmick, A.K., Chiba, T., Inoue, T.: Reactive processing of rubber-plastic blend: Role of chemical compatibilizer. J. Appl. Sci. 50, 2055–2064 (1993)CrossRefGoogle Scholar
  50. 50.
    Lachmann, M., Use of hot runner method in the injection molding of TPE, Thermoplastische Elastomere – Herausforderung an die Elastomerverarbeiter 127 (1997) 141–161Google Scholar
  51. 51.
    Fried, J.R.: Polymer science and Technology. Prentice Hall, Second Edition (2003)Google Scholar
  52. 52.
    Rodriguez, F., Cohen, C., Ober, C.: Archer. Taylor & Francis, L.A., Principles of Polymer Systems (2003)Google Scholar
  53. 53.
    Knieps, H., Extrusion of thermoplastic elastomers, Thermoplastische Elastomere – Herausforderung an die Elastomerverarbeiter 127 (1997) 103–115Google Scholar
  54. 54.
    Nagaoka, T.: Blow molding of thermoplastic elastomers (TPE). Porima Daijesuto 51, 42–54 (1999)Google Scholar
  55. 55.
    Hull, J.L., Concise Encyclopedia of Polymer Science and Engineering, John Wiley & Sons, 1990Google Scholar
  56. 56.
    Popa, G.A., Rubber: Types, Properties and Uses, Chapter 8, ISBN: 978-1-61761-464-4, Nova Science Publishers, Inc., 2010Google Scholar
  57. 57.
    Pasch, H., Augenstein, M.: Chromatographic investigations of macromolecules in the critical range of liquid chromatography: 5- Characterization of block copolymers of decyl and methyl methacrylate. Makromol. Chem 194, 2533–2541 (1993)CrossRefGoogle Scholar
  58. 58.
    Pash, H.: Liquid chromatography at the critical point of adsorption – A new technique for polymer characterization. Macromol. Symp. 110, 107–120 (1996)CrossRefGoogle Scholar
  59. 59.
    Wang, T.L., Huang, F.J.: Preparation and characterization of novel thermoplastic elastomers by step/chain transformation polymerization. Polymer 41, 5219–5228 (2000)CrossRefGoogle Scholar
  60. 60.
    Otsuka, N., Yang, Y.: Saito H and Inoue T Structure and properties of PP/Hydrogenated SBR. Ann Tech Conf Soc Plast Eng 54, 2331–2333 (1996)Google Scholar
  61. 61.
    Inoue, T., Svoboda, P.: Structure-properties of PP-EPDP thermoplastic elastomer: Origin of strain recovery, 58th Ann Tech Conf Soc. Plast. Eng. 2, 1676–1679 (2000)Google Scholar
  62. 62.
    Huang, F.J., Wang, T.L.: Synthesis and characterization of new segmented polyurethanes with side-chain, liquid-crystalline chain extenders. J Polym Sci Part A Polym Chem Ed 42, 290–302 (2003)CrossRefGoogle Scholar
  63. 63.
    Li, H., White, J.L.: Preparation and characterization of biaxially oriented films from polybutylene terephthalate based thermoplastic elastomer block copolymers. Polym. Eng. Sci. 40, 2299–2310 (2000)CrossRefGoogle Scholar
  64. 64.
    Volegova, I.A., Godovsky, Y.K., Soliman, M.: Glass transition of undrawn and drawn copolyetherester thermoplastic elastomers. Int. J. Polym. Mater 52, 549–564 (2003)CrossRefGoogle Scholar
  65. 65.
    Thakkar, H., Goettler, L.A.: The effects of dynamic vulcanization on the morphology and rheology of TPV’s and their nanocomposites. Tech Papers ACS Rubber Div 163, 482–491 (2003)Google Scholar
  66. 66.
    Pham, L.P., Sung, C.: Effects of blending SIBS and SMA on morphology and mechanical properties. Mat Res Soc Symp Proceed 734, 391–395 (2002)Google Scholar
  67. 67.
    Sauer, B.B., McLean, R.S., Brill, D.J., Londono, J.D., Morphology and orientation during deformation of segmented elastomers studied by SAXS and atomic force microscopy, Abstr 222nd ACS Meet, Chicago III, USA, PMSE–163 (2001)Google Scholar
  68. 68.
    Burford, R.P., Markotsis, M.G., Knott, R.B.: Small angle neutron scattering and transmission electron microscopy studies of interpenetrating polymers networks from thermoplastic elastomers. Nucl Instrum & Meth in Phys Res Sect B 208, 58–65 (2003)CrossRefGoogle Scholar
  69. 69.
    Schmalz, H., Abetz, V., Lange, R.: Thermoplastic elastomers based on semicrystalline block copolymers. Compos. Sci. Technol. 63, 1179–1186 (2003)CrossRefGoogle Scholar
  70. 70.
    Svodoba, P., Saito, H., Chiba, T., Inoue, T., Takemura, Y.: Morphology and elastomeric properties of isotactic polypropylene/hydrogenated polybutadiene blends. Polym. J. 32, 915–920 (2000)CrossRefGoogle Scholar
  71. 71.
    Duncan J. Shaw, Introduction to Colloid and Surface Chemistry, Elsevier Science Ltd., 1992Google Scholar
  72. 72.
    Bhattacharya, De Sati N., Kamal, M.R., Gupta, R.K., Polymeric nanocomposites: theory and practice, Hanser Verlag, Munich, 2008Google Scholar
  73. 73.
    Vladuta, C., Andronic, L., Visa, M., Duta, A.: Ceramic interface properties evaluation based on contact angle measurement. Surf. Coat. Technol. 202, 2448–2452 (2008)CrossRefGoogle Scholar
  74. 74.
    Voinea, M., Vladuta, C., Bogatu, C., Duta, A.: Surface properties of copper based cermet materials. Mater. Sci. Eng., B 152, 76–80 (2008)CrossRefGoogle Scholar
  75. 75.
    Rubber: Types, Properties and Uses, Nova Science Publishers, Inc., Cazan, C., Duta, A. co-authors Capitol 8: Recycled Rubber – Composite Matrix, 2010, ISBN: 978-1-61761-464-4Google Scholar
  76. 76.
    Vladuta, C., Voinea, M., Purghel, E., Duta, A.: Correlations between the structure and the morphology of PET- rubber nanocomposites with different additives. Mater. Sci. Eng., B 165–3, 221–226 (2009)CrossRefGoogle Scholar
  77. 77.
    Vladuta, C., Andronic, L., Duta, A.: Effect of TiO2 nanoparticles on the interfaces PET-rubber composites. J. Nanosci. Nanotechnol. 10, 2518–2526 (2010)CrossRefGoogle Scholar
  78. 78.
    Popovic, I.G., Katsikas, L.: The characterization of polymer composites by thermogravimetry. Materialy composite 40(1), 7–12 (2006)Google Scholar
  79. 79.
    Allen, N.S., Edge, M., Mohammadian, M.: Polym. Degrad. Stab. 43, 229–237 (1994)CrossRefGoogle Scholar
  80. 80.
    Nakayama, Y., Takahashi, K., Sasamoto, T.: Surf Interf Anal 24, 711–717 (1996)CrossRefGoogle Scholar
  81. 81.
    Bikiaris, D.M., Karayannidis, G.P.: Polym. Degrad. Stab. 63, 213–218 (1999)CrossRefGoogle Scholar
  82. 82.
    Fechine, G.J.M., Rabellob, M.S.: Souto Maiora, R.M., Catalani, L.H., Surface characterization of photodegraded poly(ethylene terephthalate). The effect of ultraviolet absorbers. Polymer 45, 2303–2308 (2004)CrossRefGoogle Scholar
  83. 83.
    Horrocks, A.R., Mwila, J., Miraftab, M., Liu, M., Chohan, S.S.: Polym. Degrad. Stab. 65, 25–36 (1999)CrossRefGoogle Scholar
  84. 84.
    Allen, N.S., Edge, M., Corrales, T., Catalina, F.: Polym. Degrad. Stab. 61, 139–149 (1998)CrossRefGoogle Scholar
  85. 85.
    Garbassi, F., Mora, M., Occhiello, E.: Polymer Surfaces: From Physics to Technology. John Wiley & Sons, Chichester (1998)Google Scholar
  86. 86.
    Use of different surface analysis techniques for the study of the photo-degradation of a polymeric matrix composite A. Larena*, S. Jimenez de Ochoa, Applied Surface Science 238 (2004) 530–537Google Scholar
  87. 87.
    Dick, J.S., Rubber Technology, Hanser Publishers, 2001Google Scholar
  88. 88.
    Wang, H.Y., Hu, G.L., Zhou, Y., Pan, X.D., Effects of UV-raddiation on structure and properties of poly(ethylene terephthalate), Cailiao Kexue yu Gongyi/Materials Science and Technology, 16-4 (2008) 582-584 + 588Google Scholar
  89. 89.
    Lupa, L., Negrea, P., Sallai, M., Ciopec, M., Ghiga, M., Valorificarea cenuşii de zinc sub formă de oxid de zinc de înaltă puritate, Buletinul AGIR n r. 1-2/2008Google Scholar
  90. 90.
    Mijin, Dušan: D., Savic, M., Snežana, P., Smiljanić, A., Glavaški, O., Jovanović, M., Petrović, S., A study of the photocatalytic degradation of metamitron în ZnO water suspensions. Desalination 249, 286–292 (2009)CrossRefGoogle Scholar
  91. 91.
    Wang, X., Chen, S., Cheng, X., Tu, D.: The UV aging of nano-ZnO/polyethylene composite. Diangong Jishu Xuebao/Transactions of China Electrotechnical Society 23, 6–10 (2008)Google Scholar
  92. 92.
    Qamar, M., Muneer, M.: A comparative photocatalytic activity of titanium dioxide and zinc oxide by investigating the degradation of vanillin. Desalination 249, 535–540 (2009)CrossRefGoogle Scholar
  93. 93.
    Mathews, R.W., McEvoy, S.R.: Photocatalytic degradation of phenol în the presence of near UV illuminated titanium dioxide. J. Photochem. Photobiol. A: Chem. 64, 231–246 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Faculty Product Design and EnvironmentTransilvania University of BrasovBrasovRomania

Personalised recommendations