Skip to main content

Basic Model Theory for Memory Logics

  • Conference paper
Logic, Language, Information and Computation (WoLLIC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6642))

Abstract

Memory logics is a family of modal logics whose semantics is specified in terms of relational models enriched with additional data structure to represent a memory. The logical language includes a collection of operations to access and modify the data structure. In this paper we study basic model properties of memory logics, and prove results concerning characterization, definability and interpolation. While the first two properties hold for all memory logics introduced in this article, interpolation fails in most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Areces, C., Figueira, D., Figueira, S., Mera, S.: The expressive power of memory logics. Review of Symbolic Logic 4(1) (2010)

    Google Scholar 

  2. Areces, C., Figueira, D., Gorín, D., Mera, S.: Tableaux and model checking for memory logics. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 47–61. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Areces, C., Figueira, S., Mera, S.: Completeness results for memory logics. In: Artemov, S., Nerode, A. (eds.) LFCS 2009. LNCS, vol. 5407, pp. 16–30. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Areces, C., Figueira, D., Figueira, S., Mera, S.: Expressive power and decidability for memory logics. In: Hodges, W., de Queiroz, R. (eds.) WoLLIC 2008. LNCS (LNAI), vol. 5110, pp. 56–68. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  6. Blackburn, P., Wolter, F., van Benthem, J. (eds.): Handbook of Modal Logics. Elsevier, Amsterdam (2006)

    Google Scholar 

  7. Carreiro, F.: Characterization and definability in modal first-order fragments. Master’s thesis, Universidad de Buenos Aires, arXiv:1011.4718 (2010)

    Google Scholar 

  8. Chang, C., Keisler, H.: Model Theory, Studies in Logic and the Foundations of Mathematics, 3rd edn., vol. 73. North-Holland Publishing Co., Amsterdam (1990)

    Google Scholar 

  9. Doets, K.: Basic model theory. University of Chicago Press, Chicago (1996)

    MATH  Google Scholar 

  10. Hoogland, E.: Definability and interpolation: Model-theoretic investigations. Ph.D. thesis, ILLC. Universiteit van Amsterdam (2001)

    Google Scholar 

  11. Keisler, H.J.: The ultraproduct construction. In: Proceedings of the Ultramath Conference, Pisa, Italy (2008)

    Google Scholar 

  12. Marx, M., Venema, Y.: Multi-dimensional modal logic. Kluwer, Dordrecht (1997)

    Book  MATH  Google Scholar 

  13. Mera, S.: Modal Memory Logics. Ph.D. thesis, Universidad de Buenos Aires & Université Henri Poincare, Buenos Aires, Argentina (2009)

    Google Scholar 

  14. ten Cate, B.: Model theory for extended modal languages. Ph.D. thesis, University of Amsterdam, ILLC Publications, Ph. D. Dissertation series, Amsterdam (2005)

    Google Scholar 

  15. Venema, Y.: Ultrafilter unions: an exercise in modal definability. In: First Workshop on Logic and Language, pp. 303–310. Universidad de Sevilla (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Areces, C., Carreiro, F., Figueira, S., Mera, S. (2011). Basic Model Theory for Memory Logics. In: Beklemishev, L.D., de Queiroz, R. (eds) Logic, Language, Information and Computation. WoLLIC 2011. Lecture Notes in Computer Science(), vol 6642. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20920-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20920-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20919-2

  • Online ISBN: 978-3-642-20920-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics