Diabodies, Single-Chain Diabodies, and Their Derivatives

  • Dafne MüllerEmail author
  • Roland E. Kontermann


The fragment variable (Fv) represents the smallest part of an antibody containing the entire antigen binding site formed by the variable heavy and light chain domains (VH and VL) (Filpula and McGuire 1999; Chames et al. 2009; Kontermann 2010). Because of the noncovalent interaction between the VH and VL domain, Fv molecules suffer from instability, which can be improved by connecting the two domains with a flexible peptide linker. These single-chain Fv (scFv) fragments can be easily produced in prokaryotic and eukaryotic systems and represent the prototype recombinant antibody format.


Tumor Growth Inhibition Bispecific Antibody Xenograft Tumor Mouse Model Additional Cysteine Residue scFv Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alfthan K, Takkinen K, Sizmann D, Söderlund H, Teeri TT (1995) Properties of a single-chain antibody containing different linker peptides. Protein Eng 8:725–731CrossRefPubMedGoogle Scholar
  2. Alt M, Müller R, Kontermann RE (1999) Novel tetravalent and bispecific IgG-like antibody molecules combining single-chain diabodies with the immunoglobulin g1 Fc or CH3 region. FEBS Lett 454:90–94CrossRefPubMedGoogle Scholar
  3. Arndt KM, Müller KM, Plückthun A (1998) Factors influencing the dimer to monomer transition of an antibody single-chain Fv fragment. Biochemistry 37:12918–12926CrossRefPubMedGoogle Scholar
  4. Arndt MA, Krauss J, Kipriyanov SM, Pfreundschuh M, Little M (1999) A bispecific diabody that mediates natural killer cell cytotoxicity against xenotransplantated human Hodgkin’s tumors. Blood 94(8):2562–2568PubMedGoogle Scholar
  5. Asano R, Kudo T, Nishimura Y, Makabe K, Hayashi H, Suzuki M, Tsumoto K, Kumagai I (2002) Efficient construction of a diabody using a refolding system: anti-carcinoembryonic antigen recombinant antibody fragment. J Biochem 132(6):903–909CrossRefPubMedGoogle Scholar
  6. Asano R, Kawaguchi H, Watanabe Y, Nakanishi T, Umetsu M, Hayashi H, Katayose Y, Unno M, Kudo T, Kumagai I (2008) Diabody-based recombinant formats of humanized IgG-like bispecific antibody with effective retargeting of lymphocytes to tumor cells. J Immunother 31(8):752–761CrossRefPubMedGoogle Scholar
  7. Blanco B, Holliger P, Vile RG, Alvarez-Vallina L (2003) Induction of human T lymphocyte cytotoxicity and inhibition of tumor growth by tumor-specific diabody-based molecules secreted from gene-modified bystander cells. J Immunol 171(2):1070–1077PubMedGoogle Scholar
  8. Brüsselbach S, Korn T, Völkel T, Müller R, Kontermann RE (1999) Enzyme recruitment and tumor cell killing in vitro by a secreted bispecific single-chain diabody. Tumor Target 4:115–123Google Scholar
  9. Bühler P, Wolf P, Gierschner D, Schaber I, Katzenwadel A, Schultze-Seemann W, Wetterauer U, Tacke M, Swamy M, Schamel WW, Elsässer-Beile U (2008) A bispecific diabody directed against prostate-specific membrane antigen and CD3 induces T-cell mediated lysis of prostate cancer cells. Cancer Immunol Immunother 57(1):43–52CrossRefPubMedGoogle Scholar
  10. Bühler P, Molnar E, Dopfer EP, Wolf P, Gierschner D, Wetterauer U, Schamel WW, Elsässer-Beile U (2009) Target-dependent T-cell activation by coligation with a PSMA x CD3 diabody induces lysis of prostate cancer cells. J Immunother 32(6):565–573CrossRefPubMedGoogle Scholar
  11. Carmichael JA, Power BE, Garrett TPJ, Yazaki PJ, Shively JE, Raubischek AA, Wu AM, Hudson PJ (2003) The crystal structure of an anti-CEA diabody assembled from T84.66 scFvs in VL-to-VH orientation: implications for diabody flexibility. J Mol Biol 326:341–361CrossRefPubMedGoogle Scholar
  12. Chames P, Van Regenmortel M, Weiss E, Baty D (2009) Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol 157:220–233CrossRefPubMedGoogle Scholar
  13. Cochlovius B, Kipriyanov SM, Stassar MJ, Schuhmacher J, Benner A, Moldenhauer G, Little M (2000a) Cure of Burkitt’s lymphoma in severe combined immunodeficiency mice by T cells, tetravalent CD3 x CD19 tandem diabody, and CD28 costimulation. Cancer Res 60(16):4336–4341PubMedGoogle Scholar
  14. Cochlovius B, Kipriyanov SM, Stassar MJ, Christ O, Schuhmacher J, Strauss G, Moldenhauer G, Little M (2000b) Treatment of human B cell lymphoma xenografts with a CD3 x CD19 diabody and T cells. J Immunol 165(2):888–895PubMedGoogle Scholar
  15. Compte M, Blanco B, Serrano F, Cuesta AM, Sanz L, Bernad A, Holliger P, Alvarez-Vallina L (2007) Inhibition of tumor growth in vivo by in situ secretion of bispecific anti-CEA x anti-CD3 diabodies from lentivirally transduced human lymphocytes. Cancer Gene Ther 14(4):380–388CrossRefPubMedGoogle Scholar
  16. Compte M, Cuesta AM, Sánchez-Martín D, Alonso-Camino V, Vicario JL, Sanz L, Alvarez-Vallina L (2009) Tumor immunotherapy using gene-modified human mesenchymal stem cells loaded into synthetic extracellular matrix scaffolds. Stem Cells 27(3):753–760CrossRefPubMedGoogle Scholar
  17. Compte M, Alonso-Camino V, Santos-Valle P, Cuesta AM, Sánchez-Martín D, López MR, Vicario JL, Salas C, Sanz L, Alvarez-Vallina L (2010) Factory neovessels: engineered human blood vessels secreting therapeutic proteins as a new drug delivery system. Gene Ther 17(6):745–751CrossRefPubMedGoogle Scholar
  18. DeNardo DG, Xiong CY, Shi XB, DeNardo GL, DeNardo SJ (2001) Anti-HLA-DR/anti-DOTA diabody construction in a modular gene design platform: bispecific antibodies for pretargeted radioimmunotherapy. Cancer Biother Radiopharm 16(6):525–535CrossRefPubMedGoogle Scholar
  19. Develter J, Booth NA, Declerck PJ, Gils A (2008) Bispecific targeting of thrombin activatable fibrinolysis inhibitor and plasminogen activator inhibitor-1 by a heterodimer diabody. J Thromb Haemost 6(11):1884–1891CrossRefPubMedGoogle Scholar
  20. Essig NZ, Wood JF, Howard AJ, Raag R, Whitlow M (1993) Crystallization of single-chain Fv proteins. J Mol Biol 234:897–901CrossRefPubMedGoogle Scholar
  21. Filpula D, McGuire J (1999) Single-chain Fv designs for protein, cell and gene therapeutics. Exp Opin Ther Patents 9:231–245CrossRefGoogle Scholar
  22. Fitzgerald K, Holliger P, Winter G (1997) Improved tumour targeting by disulphide stabilized diabodies expressed in Pichia pastoris. Protein Eng 10:1221–1225CrossRefPubMedGoogle Scholar
  23. Gao Y, Xiong D, Yang M, Liu H, Peng H, Shao X, Xu Y, Xu C, Fan D, Qin L, Yang C, Zhu Z (2004) Efficient inhibition of multidrug-resistant human tumors with a recombinant bispecific anti-P-glycoprotein x anti-CD3 diabody. Leukemia 18(3):513–520CrossRefPubMedGoogle Scholar
  24. Griffiths GL, Chang CH, McBride WJ, Rossi EA, Sheerin A, Tejada GR, Karacay H, Sharkey RM, Horak ID, Hansen HJ, Goldenberg DM (2004) Reagents and methods for PET using bispecific antibody pretargeting and 68Ga-radiolabeled bivalent hapten-peptide-chelate conjugates. J Nucl Med 45(1):30–39PubMedGoogle Scholar
  25. Guo H, Jiang W, Liu W, Gao Y, Yang M, Zhou Y, Wang J, Qi J, Cheng X, Zhu Z, Yang C, Xiong D (2008) Extracellular domain of 4-1BBL enhanced the antitumoral efficacy of peripheral blood lymphocytes mediated by anti-CD3 x anti-Pgp bispecific diabody against human multidrug-resistant leukemia. Cell Immunol 251(2):102–108CrossRefPubMedGoogle Scholar
  26. Hayashi H, Asano R, Tsumoto K, Katayose Y, Suzuki M, Unno M, Kodama H, Takemura S, Yoshida H, Makabe K, Imai K, Matsuno S, Kumagai I, Kudo T (2004) A highly effective and stable bispecific diabody for cancer immunotherapy: cure of xenografted tumors by bispecific diabody and T-LAK cells. Cancer Immunol Immunother 53(6):497–509CrossRefPubMedGoogle Scholar
  27. Helfrich W, Kroesen BJ, Roovers RC, Westers L, Molema G, Hoogenboom HR, de Leij L (1998) Construction and characterization of a bispecific diabody for retargeting T cells to human carcinomas. Int J Cancer 76(2):232–239CrossRefPubMedGoogle Scholar
  28. Holliger P, Prospero T, Winter G (1993) “Diabodies”: small bivalent and bispecific antibody fragments. Proc Natl Acad Sci USA 90:6444–6448CrossRefPubMedGoogle Scholar
  29. Holliger P, Brissinck J, Williams RL, Thielemans K, Winter G (1996) Specific killing of lymphoma cells by cytotoxic T-cells mediated by a bispecific diabody. Protein Eng 9(3):299–305CrossRefPubMedGoogle Scholar
  30. Holliger P, Wing M, Pound JD, Bohlen H, Winter G (1997) Retargeting serum immunoglobulin with bispecific diabodies. Nat Biotechnol 15(7):632–636CrossRefPubMedGoogle Scholar
  31. Holliger P, Manzke O, Span M, Hawkins R, Fleischmann B, Qinghua L, Wolf J, Diehl V, Cochet O, Winter G, Bohlen H (1999) Carcinoembryonic antigen (CEA)-specific T-cell activation in colon carinoma induced by anti-CD3 x anti-CEA bispecific diabodies and B7 x anti-CEA bispecific fusion proteins. Cancer Res 59:2909–2916PubMedGoogle Scholar
  32. Hopp J, Hornig N, Zettlitz KA, Schwarz A, Fuß N, Müller D, Kontermann RE (2010) The effects of affinity and valency of an albumin-binding domain (ABD) on the half-life of a single-chain diabody-ABD fusion protein. Protein Eng Des Sel 23:827–834CrossRefPubMedGoogle Scholar
  33. Houtenbos I, Santegoets S, Westers TM, Waisfisz Q, Kipriyanov S, Denkers F, Scheper RJ, de Gruijl TD, Ossenkoppele GJ, van de Loosdrecht AA (2008) The novel bispecific diabody alphaCD40/alphaCD28 strengthens leukaemic dendritic cell-induced T-cell reactivity. Br J Haematol 142(2):273–283CrossRefPubMedGoogle Scholar
  34. Hudson PJ, Kortt AA (1999) High avidity scFv multimers: diabodies and triabodies. J Immunol Meth 231:177–189CrossRefGoogle Scholar
  35. Igawa T, Tsunoda H, Kikuchi Y, Yoshida M, Tanaka M, Koga A, Sekimori Y, Orita T, Aso Y, Hattori K, Tsuchiya M (2010) VH/VL interface engineering to promote selective expression and inhibition of conformational isomerization of thrombopoeitin receptor agonist single-chain diabody. Protein Eng Des Sel 23:667–677CrossRefPubMedGoogle Scholar
  36. Iliades P, Kortt AA, Hudson PJ (1997) Triabodies: single chain Fv fragments wihtout a linker form trivalent trimers. FEBS Lett 409:437–441CrossRefPubMedGoogle Scholar
  37. Jimenez X, Lu D, Brennan L, Persaud K, Liu M, Miao H, Witte L, Zhu Z (2005) A recombinant, fully human, bispecific antibody neutralizes the biological activities mediated by both vascular endothelial growth factor receptors 2 and 3. Mol Cancer Ther 4(3):427–434PubMedGoogle Scholar
  38. Johnson S, Burke S, Huang L, Gorlatov S, Li H, Wang W, Zhang W, Tuaillon N, Rainey J, Barat B, Yang Y, Jin L, Ciccarone V, Moore PA, Koenig S, Bonvini E (2010) Effector Cell recruitment with novel Fv-based dual-affinity re-targeting protein leads to potent tumor cytolysis and in vivo B-cell depletion. J Mol Biol 399(3):436–449CrossRefPubMedGoogle Scholar
  39. Kashentseva EA, Douglas JT, Zinn KR, Curiel DT, Dmitriev IP (2009) Targeting of adenovirus serotype 5 pseudotyped with short fiber from serotype 41 to c-erbB2-positive cells using bispecific single-chain diabody. J Mol Biol 388(3):443–461CrossRefPubMedGoogle Scholar
  40. Kipriyanov SM, Moldenhauer G, Strauss G, Little M (1998) Bispecific CD3 x CD19 diabody for T cell-mediated lysis of malignant human B cells. Int J Cancer 77(5):763–772CrossRefPubMedGoogle Scholar
  41. Kipriyanov SM, Moldenhauer G, Schuhmacher J, Cochlovius B, Von der Lieth CW, Matys ER, Little M (1999) Bispecific tandem diabody for tumor therapy with improved antigen binding and pharmacokinetics. J Mol Biol 293(1):41–56CrossRefPubMedGoogle Scholar
  42. Kipriyanov SM, Cochlovius B, Schäfer HJ, Moldenhauer G, Bähre A, Le Gall F, Knackmuss S, Little M (2002) Synergistic antitumor effect of bispecific CD19 x CD3 and CD19 x CD16 diabodies in a preclinical model of non-Hodgkin’s lymphoma. J Immunol 169(1):137–144PubMedGoogle Scholar
  43. Kontermann RE (2005) Recombinant bispecific antibodies for cancer therapy. Acta Pharmacol Sin 26(1):1–9CrossRefPubMedGoogle Scholar
  44. Kontermann RE (2009) Strategies to extend plasma half-lives of recombinant antibodies. BioDrugs 23(2):93–109CrossRefPubMedGoogle Scholar
  45. Kontermann RE (2010) Alternative antibody formats. Curr Opin Mol Ther 12(2):176–183PubMedGoogle Scholar
  46. Kontermann RE, Wing MG, Winter G (1997) Complement recruitment using bispecific diabodies. Nat Biotechnol 15(7):629–631CrossRefPubMedGoogle Scholar
  47. Korn T, Nettelbeck DM, Völkel T, Müller R, Kontermann RE (2004a) Recombinant bispecific antibodies for the targeting of adenoviruses to CEA-expressing tumour cells: a comparative analysis of bacterially expressed single-chain diabody and tandem scFv. J Gene Med 6(6):642–651CrossRefPubMedGoogle Scholar
  48. Korn T, Müller R, Kontermann RE (2004b) Bispecific single-chain diabody-mediated killing of endoglin-positive endothelial cells by cytotoxic T lymphocytes. J Immunother 27(2):99–106CrossRefPubMedGoogle Scholar
  49. Kortt AA, Dolezal O, Power BE, Hudson PJ (2001) Dimeric and trimeric antibodies: high avidity scFvs for cancer targeting. Biomol Eng 18:95–108CrossRefPubMedGoogle Scholar
  50. Le Gall F, Reusch U, Little M, Kipriyanov SM (2004) Effect of linker sequences between the antibody variable domains on the formation, stability and biological activity of a bispecific tandem diabody. Protein Eng Des Sel 17:357–366CrossRefPubMedGoogle Scholar
  51. Liu J, Yang M, Wang J, Xu Y, Wang Y, Shao X, Yang C, Gao Y, Xiong D (2009) Improvement of tumor targeting and antitumor activity by a disulphide bond stabilized diabody expressed in Escherichia coli. Cancer Immunol Immunother 58(11):1761–1769CrossRefPubMedGoogle Scholar
  52. Liu R, Jiang W, Yang M, Guo H, Zhang Y, Wang J, Zhu H, Shi R, Fan D, Yang C, Zhu Z, Xie Y, Xiong D (2010) Efficient inhibition of human B-cell lymphoma in SCID mice by synergistic antitumor effect of human 4-1BB ligand/anti-CD20 fusion proteins and anti-CD3/anti-CD20 diabodies. J Immunother 33(5):500–509CrossRefPubMedGoogle Scholar
  53. Lu D, Kotanides H, Jimenez X, Zhou Q, Persaud K, Bohlen P, Witte L, Zhu Z (1999) Acquired antagonistic activity of a bispecific diabody directed against two different epitopes on vascular endothelial growth factor receptor 2. J Immunol Methods 230(1–2):159–171CrossRefPubMedGoogle Scholar
  54. Lu D, Jimenez X, Zhang H, Wu Y, Bohlen P, Witte L, Zhu Z (2001) Complete inhibition of vascular endothelial growth factor (VEGF) activities with a bifunctional diabody directed against both VEGF kinase receptors, fms-like tyrosine kinase receptor and kinase insert domain-containing receptor. Cancer Res 61(19):7002–7008PubMedGoogle Scholar
  55. Lu D, Jimenez X, Zhang H, Atkins A, Brennan L, Balderes P, Bohlen P, Witte L, Zhu Z (2003) Di-diabody: a novel tetravalent bispecific antibody molecule by design. J Immunol Methods 279(1–2):219–232CrossRefPubMedGoogle Scholar
  56. Lu D, Jimenez X, Witte L, Zhu Z (2004) The effect of variable domain orientation and arrangement on the antigen-binding activity of a recombinant human bispecific diabody. Biochem Biophys Res Commun 318(2):507–513CrossRefPubMedGoogle Scholar
  57. Lu D, Zhang H, Koo H, Tonra J, Balderes P, Prewett M, Corcoran E, Mangalampalli V, Bassi R, Anselma D, Patel D, Kang X, Ludwig DL, Hicklin DJ, Bohlen P, Witte L, Zhu Z (2005) A fully human recombinant IgG-like bispecific antibody to both the epidermal growth factor receptor and the insulin-like growth factor receptor for enhanced antitumor activity. J Biol Chem 280(20):19665–19672CrossRefPubMedGoogle Scholar
  58. Mølhøj M, Crommer S, Brischwein K, Rau D, Sriskandarajah M, Hoffmann P, Kufer P, Hofmeister R, Baeuerle PA (2007) CD19-/CD3-bispecific antibody of the BiTE class is far superior to tandem diabody with respect to redirected tumor cell lysis. Mol Immunol 44(8):1935–1943CrossRefPubMedGoogle Scholar
  59. Müller D, Karle A, Meissburger B, Höfig I, Stork R, Kontermann RE (2007) Improved pharmacokinetics of recombinant bispecific antibody molecules by fusion to human serum albumin. J Biol Chem 282(17):12650–12660CrossRefPubMedGoogle Scholar
  60. Müller D, Frey K, Kontermann RE (2008) A novel antibody-4-1BBL fusion protein for targeted costimulation in cancer immunotherapy. J Immunother 31(8):714–722CrossRefPubMedGoogle Scholar
  61. Nettelbeck DM, Miller DW, Jérôme V, Zuzarte M, Watkins SJ, Hawkins RE, Müller R, Kontermann RE (2001) Targeting of adenovirus to endothelial cells by a bispecific single-chain diabody directed against the adenovirus fiber knob domain and human endoglin (CD105). Mol Ther 3(6):882–891CrossRefPubMedGoogle Scholar
  62. Nettelbeck DM, Rivera AA, Kupsch J, Dieckmann D, Douglas JT, Kontermann RE, Alemany R, Curiel DT (2004) Retargeting of adenoviral infection to melanoma: combining genetic ablation of native tropism with a recombinant bispecific single-chain diabody (scDb) adapter that binds to fiber knob and HMWMAA. Int J Cancer 108(1):136–145CrossRefPubMedGoogle Scholar
  63. Pei XY, Holliger P, Murzin AG, Williams RL (1997) The 2.0-Å resolution crystal structure of a trimeric antibody fragment with noncognate VH-VL domain paris shows a rearrangement of VH CDR3. Proc Natl Acad Sci USA 94:9637–9642CrossRefPubMedGoogle Scholar
  64. Perisic O, Webb PA, Holliger P, Winter G, Williams RL (1994) Crystal structure of a diabody, a bivalent antibody fragment. Structure 2:1217–1226CrossRefPubMedGoogle Scholar
  65. Reiter Y, Brinkmann U, Lee B, Pastan I (1996) Engineering antibody Fv fragments for cancer detection and therapy: disulfide-stabilized Fv fragments. Nat Biotechnol 14:1239–1245CrossRefPubMedGoogle Scholar
  66. Reusch U, Le Gall F, Hensel M, Moldenhauer G, Ho AD, Little M, Kipriyanov SM (2004) Effect of tetravalent bispecific CD19xCD3 recombinant antibody construct and CD28 costimulation on lysis of malignant B cells from patients with chronic lymphocytic leukemia by autologous T cells. Int J Cancer 112(3):509–518CrossRefPubMedGoogle Scholar
  67. Schlenzka J, Moehler TM, Kipriyanov SM, Kornacker M, Benner A, Bähre A, Stassar MJ, Schäfer HJ, Little M, Goldschmidt H, Cochlovius B (2004) Combined effect of recombinant CD19 x CD16 diabody and thalidomide in a preclinical model of human B cell lymphoma. Anticancer Drugs 15(9):915–919CrossRefPubMedGoogle Scholar
  68. Segal DM, Weiner GJ, Weiner LM (1999) Bispecific antibodies in cancer therapy. Curr Opin Immunol 11:558–562CrossRefPubMedGoogle Scholar
  69. Stork R, Müller D, Kontermann RE (2007) A novel tri-functional antibody fusion protein with improved pharmacokinetic properties generated by fusing a bispecific single-chain diabody with an albumin-binding domain from streptococcal protein G. Protein Eng Des Sel 20(11):569–576CrossRefPubMedGoogle Scholar
  70. Stork R, Zettlitz KA, Müller D, Rether M, Hanisch FG, Kontermann RE (2008) N-glycosylation as novel strategy to improve pharmacokinetic properties of bispecific single-chain diabodies. J Biol Chem 283(12):7804–7812CrossRefPubMedGoogle Scholar
  71. Stork R, Campigna E, Robert B, Müller D, Kontermann RE (2009) Biodistribution of a bispecific single-chain diabody and its half-life extended derivatives. J Biol Chem 284(38):25612–25619CrossRefPubMedGoogle Scholar
  72. Takemura S, Asano R, Tsumoto K, Ebara S, Sakurai N, Katayose Y, Kodama H, Yoshida H, Suzuki M, Imai K, Matsuno S, Kudo T, Kumagai I (2000) Construction of a diabody (small recombinant bispecific antibody) using a refolding system. Protein Eng 13(8):583–588CrossRefPubMedGoogle Scholar
  73. Takemura S, Kudo T, Asano R, Suzuki M, Tsumoto K, Sakurai N, Katayose Y, Kodama H, Yoshida H, Ebara S, Saeki H, Imai K, Matsuno S, Kumagai I (2002) A mutated superantigen SEA D227A fusion diabody specific to MUC1 and CD3 in targeted cancer immunotherapy for bile duct carcinoma. Cancer Immunol Immunother 51(1):33–44CrossRefPubMedGoogle Scholar
  74. Todorovska A, Roovers RC, Dolezal O, Kortt AA, Hoogenboom HR, Hudson RJ (2001) Design and application of diabodies, triabodies and tetrabodies for cancer targeting. J Immunol Meth 248:47–66CrossRefGoogle Scholar
  75. Veri MC, Burke S, Huang L, Li H, Gorlatov S, Tuaillon N, Rainey GJ, Ciccarone V, Zhang T, Shah K, Jin L, Ning L, Minor T, Moore PA, Koenig S, Johnson S, Bonvini E (2010) Therapeutic control of B cell activation via recruitment of Fcgamma receptor IIb (CD32B) inhibitory function with a novel bispecific antibody scaffold. Arthritis Rheum 62(7):1933–1943PubMedGoogle Scholar
  76. Völkel T, Korn T, Bach M, Müller R, Kontermann RE (2001) Optimized linker sequences for the expression of monomeric and dimeric bispecific single-chain diabodies. Protein Eng 14:815–823CrossRefPubMedGoogle Scholar
  77. Whitlow M, Filpula D, Rollence ML, Feng S-L, Wood JF (1994) Multivalent Fvs: characterization of single-chain Fv oligomers and preparation of a bispecific Fv. Protein Eng 7:1017–1026CrossRefPubMedGoogle Scholar
  78. Wu AM, Williams LE, Zieran L, Padma A, Sherman M, Bebb GG, Odom-MAryon T, Wong JYC, Shively JE, Raubitschek AA (1999) Anti-carcinoembryonic antigen (CEA) diabody for rapid tumor targeting and imaging. Tumor Target 4:47–58Google Scholar
  79. Xiong D, Xu Y, Liu H, Peng H, Shao X, Lai Z, Fan D, Yang M, Han J, Xie Y, Yang C, Zhu Z (2002) Efficient inhibition of human B-cell lymphoma xenografts with an anti-CD20 x anti-CD3 bispecific diabody. Cancer Lett 177(1):29–39CrossRefPubMedGoogle Scholar
  80. Zhu Z, Zapata G, Shalaby R, Snedecor B, Chen H, Carter P (1996) High level secretion of a humanized bispecific diabody from Escherichia coli. Biotechnology 14(2):192–196CrossRefPubMedGoogle Scholar
  81. Zhu Z, Presta LG, Zapata G, Carter P (1997) Remodeling domain interfaces to enhance heterodimer formation. Protein Sci 6:781–788CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institut für Zellbiologie und ImmunologieUniversität StuttgartStuttgartGermany

Personalised recommendations