Bispecific Antibodies from Hybrid Hybridoma

Chapter

Abstract

Hybrid hybridomas (also termed quadromas or tetradomas) are man-made cell lines that secrete bispecific antibodies (bsAb) with two different specificities being able to crosslink two distinct molecules. Such antibodies do not occur in nature and have been originally developed to improve immunohistochemical staining procedures and immunoassays (Milstein and Cuello 1983; Suresh et al. 1986). Interestingly, the fusion of two immunoglobulin-producing myeloma cells (Cotton and Milstein 1973) was described even before the seminal publication of monoclonal antibody technology (Köhler and Milstein 1975). This early experiment showing expression of both parental immunoglobulin genes in the hybrid cell was performed to better understand allelic exclusion, whereby under normal conditions each B lymphocyte produces antibodies encoded by only one of two possible alleles.

Keywords

Major Histocompatibility Complex Effector Cell Malignant Ascites Bispecific Antibody Adoptive Cellular Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

I would like to thank Dr. Reinhard Schwartz-Albiez for critical reading of the manuscript and Dr. Dorothée Deppe for help preparing the figures.

References

  1. Azinovic I, DeNardo GL, Lamborn KR, Mirick G, Goldstein D, Bradt BM, DeNardo SJ (2006) Survival benefit associated with human anti-mouse antibody (HAMA) in patients with B-cell malignancies. Cancer Immunol Immunother 55:1451–1458PubMedCrossRefGoogle Scholar
  2. Baeuerle PA, Reinhardt C (2009) Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res 69:4941–4944PubMedCrossRefGoogle Scholar
  3. Bargou R, Leo E, Zugmaier G, Klinger M, Goebeler M, Knop S, Noppeney R, Viardot A, Hess G, Schuler M, Einsele H, Brandl C, Wolf A, Kirchinger P, Klappers P, Schmidt M, Riethmüller G, Reinhard C, Baeuerle PA, Kufer P (2008) Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 321:974–977PubMedCrossRefGoogle Scholar
  4. Beck A, Wurch T, Bailly C, Corvaia N (2010) Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol 10:345–352PubMedCrossRefGoogle Scholar
  5. Bohlen H, Manzke O, Patel B, Moldenhauer G, Dörken B, von Fliedner V, Diehl V, Tesch H (1993) Cytolysis of leukemic B-cells by T-cells activated via two bispecific antibodies. Cancer Res 53:4310–4314PubMedGoogle Scholar
  6. Bolhuis RLH, Lamers CHJ, Goey SH, Eggermont AMM, Trimbos JBMZ, Stoter G, Lanzavecchia A, Di Re E, Miotti S, Raspagliesi F, Rivoltini L, Colnaghi MI (1992) Adoptive immunotherapy of ovarian carcinoma with Bs-MAb-targeted lymphocytes: a multicenter study. Int J Cancer 7:78–81Google Scholar
  7. Bruynck A, Seemann G, Bosslet K (1993) Characterisation of a humanized bispecific monoclonal antibody for cancer therapy. Br J Cancer 67:436–440PubMedCrossRefGoogle Scholar
  8. Burges A, Wimberger P, Kümper C, Gorbounova V, Sommer H, Schmalfeldt B, Pfisterer J, Lichinitser M, Makhson A, Moiseyenko V, Lahr A, Schulze E, Jäger M, Ströhlein M, Heiss MM, Gottwald T, Lindhofer H, Kimmig R (2007) Effective relief of malignant ascites in patients with advanced ovarian cancer by a trifunctional anti-EpCAM x anti-CD3 antibody: a phase I/II study. Clin Cancer Res 13:3899–3905PubMedCrossRefGoogle Scholar
  9. Canevari S, Stoter G, Arienti F, Bolis G, Colnaghi MI, Di Re EM, Eggermont AMM, Goey SH, Gratama JW, Lamers CHJ, Nooy MA, Parmiani G, Raspagliesi F, Ravagnani F, Scarfone G, Trimbos JB, Warnaar SO, Bolhuis RLH (1995) Regression of advanced ovarian carcinoma by intraperinoneal treatment with autologous T lymphocytes retargeted by a bispecific monoclonal antibody. J Natl Cancer Inst 87:1463–1469PubMedCrossRefGoogle Scholar
  10. Cao Y, Vinayagamoorthy T, Noujaim A, Suresh MR (1995) A rapid non-selective method to generate quadromas by microelectrofusion. J Immunol methods 187:1–7PubMedCrossRefGoogle Scholar
  11. Chames P, Baty D (2009a) Bispecific antibodies for cancer therapy: the light at the end of the tunnel? MAbs 1:539–547PubMedCrossRefGoogle Scholar
  12. Chames P, Baty D (2009b) Bispecific antibodies for cancer therapy. Curr Opin Drug Discov Develop 12:276–283Google Scholar
  13. Chan AC, Carter PJ (2010) Therapeutic antibodies for autoimmunity and inflammation. Nat Rev Immunol. May;10(5):301-16Google Scholar
  14. Chervonsky AV, Faerman AI, Evdonina LV, Jazova AK, Kazarov AR, Gussev AI (1988) A simple metabolic system for selection of hybrid hybridomas (tetradomas) producing bispecific monoclonal antibodies. Mol Immunol 25:913–915PubMedCrossRefGoogle Scholar
  15. Clark MR, Waldmann H (1987) T-cell killing of target cells induced by hybrid antibodies: comparison of two bispecific monoclonal antibodies. J Natl Cancer Inst 79:1393–1401PubMedGoogle Scholar
  16. Corey MJ, Kinders RJ, Brown LG, Vessella RL (1997) A very sensitive coupled luminescent assay for cytotoxicity and complement-mediated lysis. J Immunol Meth 207:43–51CrossRefGoogle Scholar
  17. Cotton RGH, Milstein C (1973) Fusion of two immunoglobulin-producing myeloma cells. Nature 244:42–43PubMedCrossRefGoogle Scholar
  18. Curnow R (1997) Clinical experience with CD64-directed immunotherapy. An overview. Cancer Immunol Immunother 45:210–215PubMedCrossRefGoogle Scholar
  19. De Gast GC, Van Houten AA, Haagen IA, Klein S, De Weger RA, Van Dijk A, Philips J, Clark M, Bast BJEG (1995) Clinical experience with CD3 x CD19 bispecific antibodies in patients with B cell malignancies. J Hematother 4:433–437PubMedCrossRefGoogle Scholar
  20. De Lau WBM, Van Loon AE, Heije K, Valerio D, Bast BJEG (1989) Production of hybrid hybridomas based on HAT(s)-neomycin(r) double mutants. J Immunol Meth 117:1–8CrossRefGoogle Scholar
  21. De Lau WBM, Heije K, Neefjes JJ, Oosterwegel M, Rozemuller E, Bast BJEG (1991) Absence of preferential homologous H/L chain association in hybrid hybridomas. J Immunol 146:906–914PubMedGoogle Scholar
  22. Decker T, Lohmann-Matthes ML (1988) A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Meth 115:61–69CrossRefGoogle Scholar
  23. Deo YM, Graziano RF, Repp R, van de Winkel JGJ (1997) Clinical significance of IgG Fc receptors and FcgammaR-directed immunotherapies. Immunol Today 18:127–135PubMedCrossRefGoogle Scholar
  24. Engvall E, Perlman P (1971) Enzyme-linked immunosorbent assay (ELISA): quantitative assay of immunoglobulin G. Immunochem 8:871–879CrossRefGoogle Scholar
  25. Fanger MW, Morganelli PM, Guyre PM (1992) Bispecific antibodies. Crit Rev Immunol 12:101–124PubMedGoogle Scholar
  26. Falkenberg FW, Weichert H, Krane M, Bartels I, Palme M, Nagels HO, Fiebig H (1995) In vitro production of monoclonal antibodies in high concentration in a new and easy to handle modular minifermenter. J Immunol Methods. Feb 13;179(1):13–29.Google Scholar
  27. Ferrini S, Prigione I, Mammoliti S, Colnaghi MI, Ménard S, Moretta A, Moretta L (1989) Re-targeting of human lymphocytes expressing the T-cell receptor gamma/delta to ovarian carcinoma cells by the use of bispecific monoclonal antibodies. Int J Cancer 44:245–250PubMedCrossRefGoogle Scholar
  28. Ferrini F, Cambiaggi A, Cantoni C, Canevari S, Mezzanzanica D, Colaghi MI, Moretta L (1992) Targeting of T or NK lymphocytes against tumor cells by bispecific monoclonal antibodies: role of different triggering molecules. Int J Cancer 7:15–18Google Scholar
  29. Garrido F, Algarra I (2001) MHC antigens and tumor escape from immune surveillance. Adv Cancer Res 83:117–158PubMedCrossRefGoogle Scholar
  30. Gilliland LK, Clark MR, Waldmann H (1988) Universal bispecific antibody for targeting tumor cells for destruction by cytotoxic T cells. Proc Natl Acad Sci USA 85:7719–7723PubMedCrossRefGoogle Scholar
  31. Glenie MJ, McBride HM, Worth AT, Stevenson GT (1987) Preparation and performance of bispecific F(ab’ gamma)2 antibody containing thioether-linked Fab’ gamma fragments. J Immunol 139:2367–2375Google Scholar
  32. Gupta S, Suresh M (2002) Affinity chromatography and co-chromatography of bispecific monoclonal antibody immunoconjugates. J Biochem Biophys Meth 51:203–216PubMedCrossRefGoogle Scholar
  33. Heiss MM, Murawa P, Koralewski P, Kutarska E, Kolesnik OO, Ivanchenko VV, Dudnichenko AS, Aleknaviciene B, Razbadauskas A, Gore M, Ganea-Motan E, Ciuleanu T, Wimberger P, Schmittel A, Schmalfeld B, Burges A, Bokemeyer C, Lindhofer H, Lahr A, Parsons SL (2010) The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: results of a prospective randomized phase II/III trial. Int J Cancer 127:2209–2221PubMedCrossRefGoogle Scholar
  34. Hoffmann SC, Wabnitz GH, Samstag Y, Moldenhauer G, Ludwig T (2011) Functional analysis of bispecific antibody (EpCAMxCD3) mediated T-lymphocyte and cancer cell interaction by single cell force spectroscopy. Int J Cancer 128(9):2096–2104PubMedCrossRefGoogle Scholar
  35. Hombach A, Jung W, Pohl C, Renner C, Sahin U, Schmitts R, Wolf J, Kapp U, Diehl V, Pfreundschuh M (1993) A CD16/CD30 bispecific antibody induces lysis of Hodgkin cells by unstimulated natural killer cells in vitro and in vivo. Int J Cancer 55:830–837PubMedCrossRefGoogle Scholar
  36. James ND, Atherton PJ, Jones J, Howie AJ, Tchekmedyian S, Curnow RT (2001) A phase II study of the bispecific antibody MDX-H210 (anti-HER2 x CD64) with GM-CSF in HER2+ advanced prostate cancer. Br J Cancer 85:152–156PubMedCrossRefGoogle Scholar
  37. Jung G, Müller-Eberhard HJ (1988) An in-vitro model for tumor immunotherapy with antibody heteroconjugates. Immunol Today 9:257–260PubMedCrossRefGoogle Scholar
  38. Jung G, Ledbetter JA, Müller-Eberhardt HJ (1987) Induction of cytotoxicity in resting human T lymphocytes bound to tumor cells by antibody heteroconjugates. Proc Natl Acad Sci USA 84:4611–4615PubMedCrossRefGoogle Scholar
  39. Karawajew L, Micheel B, Behrsing O, Gaestel M (1987) Bispecific antibody-producing hybrid hybridomas selected by a fluorescence activated cell sorter. J Immunol Meth 96:265–270CrossRefGoogle Scholar
  40. Khazaeli MB, Conry RM, LoBuglio AF (1994) Human immune response to monoclonal antibodies. J Immunother 15:42–52CrossRefGoogle Scholar
  41. Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497PubMedCrossRefGoogle Scholar
  42. Koolwijk P, Rozemuller E, Stad RK, De Lau WB, Bast BJ (1988) Enrichment and selection of hybrid hybridomas by Percoll density gradient centrifugation and fluorescent-activated cell sorting. Hybridoma 7:217–225PubMedCrossRefGoogle Scholar
  43. Kreutz FT, Xu DZ, Suresh MR (1998) A new method to generate quadromas by electrofusion and FACS sorting. Hybridoma 17:267–273PubMedCrossRefGoogle Scholar
  44. Kroesen BJ, ter Haar A, Spakman H, Willemse P, Sleijfer DT, de Vries EG, Mulder NH, Berendsen HH, Limburg PC, The TH et al (1993) Local antitumor treatment in carcinoma patients with bispecific-monoclonal-antibody-redirected T cells. Cancer Immunol Immunother 37:400–407PubMedCrossRefGoogle Scholar
  45. Kroesen BJ, Buter J, Sleijfer DT, Jansen RAJ, van der Graaf WTA, The TH, de Leij L, Mulder NH (1994) Phase I study of intravenously applied bispecific antibody in renal cell cancer patients receiving subcutaneous interleukin 2. Br J Cancer 70:652–661PubMedCrossRefGoogle Scholar
  46. Kroesen BJ, Bakker A, van Lier RAW, The HT, de Leij L (1995) Bispecific antibody-mediated target cell-specific costimulation of resting T cells via CD5 and CD28. Cancer Res 55:4409–4415PubMedGoogle Scholar
  47. Kufer P, Lutterbüse R, Baeuerle PA (2004) A revival of bispecific antibodies. Trends Biotechnol 22:238–244PubMedCrossRefGoogle Scholar
  48. Lamers CHJ, Gratama JW, Warnaar SO, Stoter G, Bolhuis RLH (1995) Inhibition of bispecific monoclonal antibody (bsAb)-targeted cytolysis by human anti-mouse antibodies in ovarian carcinoma patients treated with bsAb-targeted activated T-lymphocytes. Int J Cancer 60:450–457PubMedCrossRefGoogle Scholar
  49. Lanzavecchia A, Scheidegger D (1987) The use of hybrid hybridomas to target human cytotoxic T lymphocytes. Eur J Immunol 17:105–111PubMedCrossRefGoogle Scholar
  50. Lanzavecchia A, Abrignani S, Scheidegger D, Obrist R, Dörken B, Moldenhauer G (1988) Antibodies as antigens. The use of mouse monoclonal antibodies to focus human T cells against selected targets. J Exp Med 167:345–352PubMedCrossRefGoogle Scholar
  51. Lindhofer H, Mocikat R, Steipe B, Thierfelder S (1995) Preferential species-restricted heavy/light chain pairing in rat/mouse quadromas. Implications for a single-step purification of bispecific antibodies. J Immunol. Jul 1;155(1):219–25Google Scholar
  52. Link BK, Weiner GJ (1993) Production and characterization of a bispecific IgG capable of inducing T-cell-mediated lysis of malignant B cells. Blood 81:3343–3349PubMedGoogle Scholar
  53. Little M, Kipriyanov SM, Le Gall F, Moldenhauer G (2000) Of mice and men: hybridoma and recombinant antibodies. Immunol Today 21:364–370PubMedCrossRefGoogle Scholar
  54. Liu MA, Kranz DM, Kurnick JT, Boyle LA, Levy R, Eisen HN (1985) Heteroantibody duplexes target cells for lysis by cytotoxic T lymphocytes. Proc Natl Acad Sci USA 82:8648–8652PubMedCrossRefGoogle Scholar
  55. Manzke O, Tesch H, Diehl H, Bohlen H (1997) Single-step purification of bispecific monoclonal antibodies for immunotherapeutic use by hydrophobic interaction chromatography. J Immunol Meth 208:65–73CrossRefGoogle Scholar
  56. Manzke O, Tesch H, Borchmann P, Wolf J, Lackner K, Gossmann A, Diehl V, Bohlen H (2001a) Locoregional treatment of low-grade B-cell lymphoma with CD3xCD19 bispecific antibodies and CD28 costimulation: I. Clinical phase I evaluation. Int J Cancer 91:508–515PubMedCrossRefGoogle Scholar
  57. Manzke O, Tesch H, Lorenzen J, Diehl V, Bohlen H (2001b) Locoregional treatment of low-grade B-cell lymphoma with CD3xCD19 bispecific antibodies and CD28 costimulation: II. Assessment of cellular immune responses. Int J Cancer 91:516–522PubMedCrossRefGoogle Scholar
  58. Marmé A, Strauss G, Bastert G, Grischke E-M, Moldenhauer G (2002) Intraperitoneal bispecific antibody (HEA125xOKT3) therapy inhibits malignant ascites production in advanced ovarian carcinoma. Int J Cancer 101:183–189PubMedCrossRefGoogle Scholar
  59. Milstein C, Cuello AC (1983) Hybrid hybridomas and their use in immunohistochemistry. Nature 305:537–540PubMedCrossRefGoogle Scholar
  60. Milstein C, Cuello AC (1984) Hybrid hybridomas and the production of bi-specific monoclonal antibodies. Immunol Today 5:299–304CrossRefGoogle Scholar
  61. Miotti S, Negri DRM, Valota O, Calabrese M, Bolhuis RLH, Gratama JW, Colnaghi MI, Canevari S (1999) Level of anti-mouse-antibody response induced by bispecific monoclonal antibody OC/TR in ovarian carcinoma patients is associated with longer survival. Int J Cancer 84:62–68PubMedCrossRefGoogle Scholar
  62. Moldenhauer G (2007) Selection strategies I: monoclonal antibodies. In: Dübel S (ed) Handbook of therapeutic antibodies. Wiley-VCH, Weinheim, pp 19–44Google Scholar
  63. Müller D, Kontermann RE (2007a) Bispecific antibodies. In: Dübel S (ed) Handbook of therapeutic antibodies. Wiley-VCH, Weinheim, pp 345–378CrossRefGoogle Scholar
  64. Müller D, Kontermann RE (2007b) Recombinant bispecific antibodies for cellular cancer immunotherapy. Curr Opin Mol Ther 9:319–326PubMedGoogle Scholar
  65. Müller D, Kontermann RE (2010) Bispecific antibodies for cancer immunotherapy. Current perspectives. Biodrugs 24:89–98PubMedCrossRefGoogle Scholar
  66. Nimmerjahn F, Ravetch JV (2006) Fc-gamma receptors: old friends and new family members. Immunity 24:19–28PubMedCrossRefGoogle Scholar
  67. Nimmerjahn F, Ravetch JV (2007) Antibodies, Fc receptors and cancer. Curr Opin Immunol 19:239–245PubMedCrossRefGoogle Scholar
  68. Perez P, Hoffman RW, Shaw S, Bluestone JA, Segal DM (1985) Specific targeting of cytotoxic T cells by anti-T3 linked to anti-target cell antibody. Nature 316:354–356PubMedCrossRefGoogle Scholar
  69. Pohl C, Denfeld R, Renner C, Jung W, Bohlen H, Sahin U, Hombach A, van Lier R, Schwonzen M, Diehl V, Pfreundschuh M (1993) CD30-antigen-specific targeting and activation of T cells via murine bispecific monoclonal antibodies against CD3 and CD28: potential use for the treatment of Hodgkin’s lymphoma. Int J Cancer 54:820–827PubMedCrossRefGoogle Scholar
  70. Pontecorvo G (1975) Production of mammalian somatic cell hybrids by means of polyethylene glycol treatment. Somat Cell Genet 1:397–400PubMedCrossRefGoogle Scholar
  71. Renner C, Pfreundschuh M (1995) Tumor therapy by immune recruitment with bispecific antibodies. Immunol Rev 145:179–209PubMedCrossRefGoogle Scholar
  72. Renner C, Held G, Ohnesorge S, Bauer S, Gerlach K, Pfitzenmeier JP, Pfreundschuh M (1997) Role of perforin, granzymes and the proliferative state of the target cells in apoptosis and necrosis mediated by bispecific-antibody-activated cytotoxic T cells. Cancer Immunol Immunother 44:70–76PubMedCrossRefGoogle Scholar
  73. Repp R, Valerius T, Wieland G, Becker W, Steininger H, Deo Y, Helm G, Gramatzki M, van de Winkel JG, Lang N, Kalden JR (1995) G-CSF-stimulated PMN in immunotherapy of breast cancer with a bispecific antibody to Fc gamma RI and to HER-2/neu (MDX-210). J Hematother 4:415–421PubMedCrossRefGoogle Scholar
  74. Ruf P, Lindhofer H (2001) Induction of a long-lasting antitumor immunity by a trifunctional bispecific antibody. Blood 98:2526–2534PubMedCrossRefGoogle Scholar
  75. Salnikov AV, Groth A, Apel A, Kalifatidis G, Beckermann BM, Khamidjanov A, Ryschich E, Buechler MW, Herr I, Moldenhauer G (2009) Targeting of cancer stem cell marker EpCAM by bispecific antibody EpCAMxCD3 inhibits pancreatic carcinoma. J Cell Mol Med 13:4023–4033PubMedCrossRefGoogle Scholar
  76. Schneider CK, Kalinke U, Löwer J (2006) TGN1412 -a regulator’s perspective. Nat Biotechnol 24:493–496PubMedCrossRefGoogle Scholar
  77. Schweizer C, Strauss G, Lindner M, Marmé A, Deo YM, Moldenhauer G (2002) Efficient carcinoma cell killing by activated polymorphonuclear neutrophils targeted with an Ep-CAMxCD64 (HEA125x197) bispecific antibody. Cancer Immunol Immunother 51:621–629PubMedCrossRefGoogle Scholar
  78. Segal DM, Bast BJEB (2001) Production of bispecific antibodies. In: Coligan JE, Kruisbeek AM, Margulies DH, Shevach EM, Strober W (eds) Current protocols in immunology. Wiley, New York, 2.13.1–2.13.16Google Scholar
  79. Seimetz D, Lindhofer H, Bokemeyer C (2010) Development and approval of the trifunctional antibody catumaxomab (anti-EpCAM x anti-CD3) as a targeted cancer immunotherapy. Cancer Treat Rev 36:458–467PubMedCrossRefGoogle Scholar
  80. Staerz UD, Bevan MJ (1986) Hybrid hybridoma producing a bispecific monoclonal antibody that can focus effector T-cell activity. Proc Natl Acad Sci USA 83:1453–1457PubMedCrossRefGoogle Scholar
  81. Staerz UD, Kanegawa O, Bevan MJ (1985) Hybrid antibodies can target sites for attack by T cells. Nature 314:628–631PubMedCrossRefGoogle Scholar
  82. Strauss G, Gueckel B, Wallwiener D, Moldenhauer G (1999) Without prior stimulation tumor-associated lymphocytes from malignant effusions lyse autologous tumor cells in the presence of bispecific antibody HEA125xOKT3. Clin Cancer Res 5:171–180PubMedGoogle Scholar
  83. Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-cortes A, Brunner MD, Panoskaltsis N (2006) Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. New Engl J Med 355:1018–1028PubMedCrossRefGoogle Scholar
  84. Suresh MR, Cuello AC, Milstein C (1986) Advantages of bispecific hybridomas in one-step immunocytochemistry and immunoassays. Proc Natl Acad Sci USA 83:7989–7993PubMedCrossRefGoogle Scholar
  85. Tarditi L, Camagna M, Parisi A, Vassarotto C, De Monte LB, Letarte M, Malavasi F, Mariani M (1992) Selective high-performance liquid chromatographic purification of bispecific monoclonal antibodies. J Chromatogr 599:13–20PubMedCrossRefGoogle Scholar
  86. Trebak M, Chong JM, Herlyn D, Speicher DW (1999) Efficient laboratory-scale production of monoclonal antibodies using membrane-based high-density cell culture technology. J Immunol Methods. Nov 19;230(1-2):59–70Google Scholar
  87. Tita-Nwa F, Moldenhauer G, Herbst M, Kleist C, Ho AD, Kornacker M (2007) Cytokine-induced killer cells targeted by the novel bispecific antibody CD19xCD5 (HD37xT5.16) efficiently lyse B-lymphoma cells. Cancer Immunol Immunother 56:1911–1920PubMedCrossRefGoogle Scholar
  88. Urnovitz HB, Chang Y, Scott M, Fleischman J, Lynch RG (1988) IgA:IgM and IgA:IgA hybrid hybridomas secrete heteropolymeric immunoglobulin’s that are polyvalent and bispecific. J Immunol 140:558–563PubMedGoogle Scholar
  89. Valerius T, Stockmeyer B, van Spriel AB, Graziano RF, van den Herik-Oudijk IE, Repp R, Deo YM, Lund J, Kalden JR, Gramatzki M, van de Winkel JG (1997) FcalphaRI (CD89) as a novel trigger molecule for bispecific antibody therapy. Blood 90:4485–4492PubMedGoogle Scholar
  90. Van Regenmortel MH (2003) Improving the quality of BIACORE-based affinity measurements. Dev Biol 112:141–151Google Scholar
  91. Van Spriel AB, van Ojik HH, van de Winkel JGJ (2000) Immunotherapeutic perspective for bispecific antibodies. Immunol Today 21:391–397PubMedCrossRefGoogle Scholar
  92. Warnaar SO, De Paus V, Lardenhoije R, Machielse BNM, De Graaf J, Bregonje M, Van Haarlem H (1994) Purification of bispecific F(ab’)2 from murine trioma OC/TR with specificity for CD3 and ovarian cancer. Hybridoma 13:519–526PubMedGoogle Scholar
  93. Weiner LM (2007) Building better magic bullets: improving unconjugated monoclonal antibody therapy for cancer. Nat Rev Cancer 7:701–706PubMedCrossRefGoogle Scholar
  94. Weiner LM, Dhodapkar MV, Ferrone S (2009) Monoclonal antibodies for cancer immunotherapy. Lancet 373:1033–1040PubMedCrossRefGoogle Scholar
  95. Wild MK, Strittmatter W, Matzku S, Schraven B, Meuer SC (1999) Tumor therapy with bispecific antibody: the targeting and triggering steps can be separated employing a CD2-based strategy. J Immunol 163:2064–2072PubMedGoogle Scholar
  96. Zeidler R, Reisbach G, Wollenberg B, Lang S, Chaubal S, Schmitt B, Lindhofer H (1999) Simultaneous activatin of T cells and accessory cells by a new class if intact bispecific antibody results in efficient tumor cell killing. J Immunol 163:1246–1252PubMedGoogle Scholar
  97. Zeidler R, Mysliwietz J, Csanady M, Walz A, Ziegler I, Schmitt B, Wollenberg B, Lindhofer H (2000) The Fc-region of a new class of intact bispecific antibody mediates activation of accessory cells and NK cells and induces direct phagocytosis of tumor cells. Br J Cancer 83:261–266PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Translational Immunology Unit (D015), Tumor Immunology ProgramGerman Cancer Research Center, National Center for Tumor DiseasesHeidelbergGermany

Personalised recommendations