Bispecific Antibodies for the Retargeting of Cytokines

  • Bruno Robert
  • Christel Larbouret
  • David Azria
  • Jean-Pierre Mach
  • André Pèlegrin
Chapter

Abstract

The use of cytokines as adjuvant for different forms of cancer therapy represents one of the most promising areas of applied cancer research (Seruga et al.2008). As examples, Interleukin-2 is now been a classical treatment for renal cell carcinoma (FDA approved in 1992) and always evaluated for other cancer immunotherapy, interferon α for melanoma therapy (FDA approved in 1995) and others, such as IL-15 emerged as good candidate since IL-15 was ranked 1st/124 immunomodulatory drugs in clinical and preclinical trials to treat cancer by an NCI consortium (Cheever 2008).

Keywords

Isolate Limb Perfusion Tumor Growth Delay Bispecific Antibody Tumor Blood Flow Murine Colon Carcinoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abbruzzese JL et al (1989) Phase I trial of recombinant human gamma-interferon and recombinant human tumor necrosis factor in patients with advanced gastrointestinal cancer. Cancer Res 49(14):4057–4061PubMedGoogle Scholar
  2. Asher AL et al (1991) Murine tumor cells transduced with the gene for tumor necrosis factor-alpha. Evidence for paracrine immune effects of tumor necrosis factor against tumors. J Immunol 146(9):3227–3234PubMedGoogle Scholar
  3. Azria D et al (2003a) Potentiation of ionising radiation by targeting tumour necrosis factor alpha using a bispecific antibody in human pancreatic cancer. Br J Cancer 89(10):1987–1994PubMedCrossRefGoogle Scholar
  4. Azria D et al (2003b) Enhancement of radiation therapy by tumor necrosis factor alpha in human colon cancer using a bispecific antibody. Int J Radiat Oncol Biol Phys 55(5):1363–1373PubMedCrossRefGoogle Scholar
  5. Azria D et al (2004) A bispecific antibody to enhance radiotherapy by tumor necrosis factor-alpha in human CEA-expressing digestive tumors. Int J Radiat Oncol Biol Phys 58(2):580–588PubMedCrossRefGoogle Scholar
  6. Balkwill FR et al (1986) Human tumor xenografts treated with recombinant human tumor necrosis factor alone or in combination with interferons. Cancer Res 46(8):3990–3993PubMedGoogle Scholar
  7. Brouckaert PG et al (1986) In vivo anti-tumour activity of recombinant human and murine TNF, alone and in combination with murine IFN-gamma, on a syngeneic murine melanoma. Int J Cancer 38(5):763–769PubMedCrossRefGoogle Scholar
  8. Carswell EA et al (1975) An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 72(9):3666–3670PubMedCrossRefGoogle Scholar
  9. Chatal JF et al (1995) Bifunctional antibodies for radioimmunotherapy. Hybridoma 14(2):125–128PubMedCrossRefGoogle Scholar
  10. Cheever MA (2008) Twelve immunotherapy drugs that could cure cancers. Immunol Rev 222:357–368PubMedCrossRefGoogle Scholar
  11. Clarke P et al (1998) Mice transgenic for human carcinoembryonic antigen as a model for immunotherapy. Cancer Res 58(7):1469–1477PubMedGoogle Scholar
  12. Corvalan JR et al (1987) Specific in vitro and in vivo drug localisation to tumour cells using a hybrid-hybrid monoclonal antibody recognising both carcinoembryonic antigen (CEA) and vinca alkaloids. Cancer Immunol Immunother 24(2):133–137PubMedGoogle Scholar
  13. Creasey AA, Reynolds MT, Laird W (1986) Cures and partial regression of murine and human tumors by recombinant human tumor necrosis factor. Cancer Res 46(11):5687–5690PubMedGoogle Scholar
  14. Curnis F et al (2000) Enhancement of tumor necrosis factor alpha antitumor immunotherapeutic properties by targeted delivery to aminopeptidase N (CD13). Nat Biotechnol 18(11):1185–1190PubMedCrossRefGoogle Scholar
  15. Curnow RT (1997) Clinical experience with CD64-directed immunotherapy. An overview. Cancer Immunol Immunother 45(3–4):210–215PubMedCrossRefGoogle Scholar
  16. de Wilt JH et al (2000) Tumour necrosis factor alpha increases melphalan concentration in tumour tissue after isolated limb perfusion. Br J Cancer 82(5):1000–1003PubMedCrossRefGoogle Scholar
  17. Dela Cruz JS et al (2000) Recombinant anti-human HER2/neu IgG3-(GM-CSF) fusion protein retains antigen specificity and cytokine function and demonstrates antitumor activity. J Immunol 165(9):5112–5121PubMedGoogle Scholar
  18. Dela Cruz JS et al (2004) Antibody-cytokine fusion proteins: innovative weapons in the war against cancer. Clin Exp Med 4(2):57–64PubMedCrossRefGoogle Scholar
  19. Delaloye B et al (1986) Detection of colorectal carcinoma by emission-computerized tomography after injection of 123I-labeled Fab or F(ab′)2 fragments from monoclonal anti-carcinoembryonic antigen antibodies. J Clin Invest 77(1):301–311PubMedCrossRefGoogle Scholar
  20. Folli S et al (1993) Tumor-necrosis factor can enhance radio-antibody uptake in human colon carcinoma xenografts by increasing vascular permeability. Int J Cancer 53(5):829–836PubMedCrossRefGoogle Scholar
  21. French RR et al (1995) Delivery of the ribosome-inactivating protein, gelonin, to lymphoma cells via CD22 and CD38 using bispecific antibodies. Br J Cancer 71(5):986–994PubMedCrossRefGoogle Scholar
  22. Girardet C et al (1986) Immunochemical characterization of two antigens recognized by new monoclonal antibodies against human colon carcinoma. J Immunol 136(4):1497–1503PubMedGoogle Scholar
  23. Glennie MJ et al (1987) Preparation and performance of bispecific F(ab’ gamma)2 antibody containing thioether-linked Fab’ gamma fragments. J Immunol 139(7):2367–2375PubMedGoogle Scholar
  24. Hallahan DE et al (1989) Increased tumor necrosis factor alpha mRNA after cellular exposure to ionizing radiation. Proc Natl Acad Sci USA 86(24):10104–10107PubMedCrossRefGoogle Scholar
  25. Hallahan DE et al (1990) The interaction between recombinant human tumor necrosis factor and radiation in 13 human tumor cell lines. Int J Radiat Oncol Biol Phys 19(1):69–74PubMedCrossRefGoogle Scholar
  26. Havell EA, Fiers W, North RJ (1988) The antitumor function of tumor necrosis factor (TNF), I. Therapeutic action of TNF against an established murine sarcoma is indirect, immunologically dependent, and limited by severe toxicity. J Exp Med 167(3):1067–1085PubMedCrossRefGoogle Scholar
  27. Hoogenboom HR, Raus JC, Volckaert G (1991) Targeting of tumor necrosis factor to tumor cells: secretion by myeloma cells of a genetically engineered antibody-tumor necrosis factor hybrid molecule. Biochim Biophys Acta 1096(4):345–354PubMedCrossRefGoogle Scholar
  28. Kaspar M, Trachsel E, Neri D (2007) The antibody-mediated targeted delivery of interleukin-15 and GM-CSF to the tumor neovasculature inhibits tumor growth and metastasis. Cancer Res 67(10):4940–4948PubMedCrossRefGoogle Scholar
  29. Khawli LA, Miller GK, Epstein AL (1994) Effect of seven new vasoactive immunoconjugates on the enhancement of monoclonal antibody uptake in tumors. Cancer 73(3 Suppl):824–831PubMedCrossRefGoogle Scholar
  30. King DM et al (2004) Phase I clinical trial of the immunocytokine EMD 273063 in melanoma patients. J Clin Oncol 22(22):4463–4473PubMedCrossRefGoogle Scholar
  31. Larbouret C et al (2007) Radiocurability by targeting tumor necrosis factor-alpha using a bispecific antibody in carcinoembryonic antigen transgenic mice. Int J Radiat Oncol Biol Phys 69(4):1231–1237PubMedCrossRefGoogle Scholar
  32. LeBerthon B et al (1991) Enhanced tumor uptake of macromolecules induced by a novel vasoactive interleukin 2 immunoconjugate. Cancer Res 51(10):2694–2698PubMedGoogle Scholar
  33. Lejeune FJ (2002) Clinical use of TNF revisited: improving penetration of anti-cancer agents by increasing vascular permeability. J Clin Invest 110(4):433–435PubMedGoogle Scholar
  34. Lejeune FJ, Eggermont AM (2007) Hyperthermic isolated limb perfusion with tumor necrosis factor is a useful therapy for advanced melanoma of the limbs. J Clin Oncol 25(11):1449–1450PubMedCrossRefGoogle Scholar
  35. Lienard D et al (1992) High-dose recombinant tumor necrosis factor alpha in combination with interferon gamma and melphalan in isolation perfusion of the limbs for melanoma and sarcoma. J Clin Oncol 10(1):52–60PubMedGoogle Scholar
  36. Moritz T et al (1989) Phase I study of recombinant human tumor necrosis factor alpha in advanced malignant disease. Cancer Immunol Immunother 29(2):144–150PubMedCrossRefGoogle Scholar
  37. Mullen CA et al (1992) Fibrosarcoma cells transduced with the IL-6 gene exhibited reduced tumorigenicity, increased immunogenicity, and decreased metastatic potential. Cancer Res 52(21):6020–6024PubMedGoogle Scholar
  38. Müller D et al (2007) Improved pharmacokinetics of recombinant bispecific antibody molecules by fusion to human serum albumin. J Biol Chem 282(17):12650–12660PubMedCrossRefGoogle Scholar
  39. Osada T et al (2010) Metastatic colorectal cancer cells from patients previously treated with chemotherapy are sensitive to T-cell killing mediated by CEA/CD3-bispecific T-cell-engaging BiTE antibody. Br J Cancer 102(1):124–133PubMedCrossRefGoogle Scholar
  40. Ribas A et al (2009) Phase I/II open-label study of the biologic effects of the interleukin-2 immunocytokine EMD 273063 (hu14.18-IL2) in patients with metastatic malignant melanoma. J Transl Med 7:68PubMedCrossRefGoogle Scholar
  41. Robert B et al (1996) Cytokine targeting in tumors using a bispecific antibody directed against carcinoembryonic antigen and tumor necrosis factor alpha. Cancer Res 56(20):4758–4765PubMedGoogle Scholar
  42. Rosenblum MG et al (1991) Antibody-mediated delivery of tumor necrosis factor (TNF-alpha): improvement of cytotoxicity and reduction of cellular resistance. Cancer Commun 3(1):21–27PubMedGoogle Scholar
  43. Seruga B et al (2008) Cytokines and their relationship to the symptoms and outcome of cancer. Nat Rev Cancer 8(11):887–899PubMedCrossRefGoogle Scholar
  44. Ten Hagen TL et al (2000) Low-dose tumor necrosis factor-alpha augments antitumor activity of stealth liposomal doxorubicin (DOXIL) in soft tissue sarcoma-bearing rats. Int J Cancer 87(6):829–837PubMedCrossRefGoogle Scholar
  45. Tracey KJ et al (1987) Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature 330(6149):662–664PubMedCrossRefGoogle Scholar
  46. Yang J, Moyana T, Xiang J (1995) A genetically engineered single-chain FV/TNF molecule possesses the anti-tumor immunoreactivity of FV as well as the cytotoxic activity of tumor necrosis factor. Mol Immunol 32(12):873–881PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bruno Robert
    • 1
  • Christel Larbouret
    • 1
  • David Azria
    • 1
  • Jean-Pierre Mach
    • 2
  • André Pèlegrin
    • 1
  1. 1.IRCM-Institut de Recherche en Cancérologie de Montpellier, Université MontpellierI, CRLC Val d’Aurelle-Paul LamarqueMontpellier, Cedex 5France
  2. 2.Department of BiochemistryUniversity of LausanneEpalingesSwitzerland

Personalised recommendations