Advertisement

The Dock-and-Lock (DNL) Approach to Novel Bispecific Antibodies

  • Chien-Hsing Chang
  • Edmund A. Rossi
  • Robert M. Sharkey
  • David M. Goldenberg
Chapter

Abstract

Biotechnology products are being designed increasingly as multivalent, multifunctional structures based on recombinant fusion proteins. To augment the existing repertoires of such agents as produced by genetic engineering alone, we envisioned and developed the Dock-and-Lock (DNL) method, which enables site-specific conjugation of two modular components only with each other, producing a covalent construct of defined composition with retained bioactivity. The basic strategy of DNL involves the generation of two types of modules, one containing the dimerization and docking domain (DDD) of cAMP-dependent protein kinase A and the other containing the anchoring domain (AD) of an interactive A-kinase anchoring protein. Docking a DDD module with an AD module occurs spontaneously, and the resulting complex is locked with disulfide bonds to enhance in vivo stability. This new platform technology provides a versatile approach to create novel bispecific antibodies of multiple valencies, with potential applications in the detection and therapy of diverse diseases.

Keywords

Median Survival Time Raji Cell Median Fluorescence Intensity Bispecific Antibody Direct Toxicity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alto NM, Soderling SH, Hoshi N, Langeberg LK, Fayos R, Jennings PA, Scott JD (2003) Bioinformatic design of A-kinase anchoring protein-in silico: a potent and selective peptide antagonist of type II protein kinase A anchoring. Proc Natl Acad Sci USA 100(8):4445–4450PubMedCrossRefGoogle Scholar
  2. Asano R, Watanabe Y, Kawaguchi H, Fukuzawa H, Nakanishi T, Umetzu M, Hayashi H, Katayose Y, Unno M, Kudo T, Kumahai I (2007) Highly effective recombinant format of a humanized IgG-like bispecific antibody for cancer immunotherapy with retargeting of lymphocytes to tumor cells. J Biol Chem 282(38):27659–27665PubMedCrossRefGoogle Scholar
  3. Baillie GS, Scott JD, Houslay MD (2005) Compartmentalisation of phosphodiesterases and protein kinase A: opposites attract. FEBS Lett 579(15):3264–3270PubMedCrossRefGoogle Scholar
  4. Binz HK, Pluckthun A (2005) Engineered proteins as specific binding reagents. Curr Opin Biotechnol 16(4):459–469PubMedCrossRefGoogle Scholar
  5. Binz HK, Amstutz P, Pluckthun A (2005) Engineering novel binding proteins from nonimmunoglobulin domains. Nat Biotechnol 23(10):1257–1268PubMedCrossRefGoogle Scholar
  6. Brennan M, Davison PF, Paulus H (1985) Preparation of bispecific antibodies by chemical recombination of monoclonal immunoglobulin G1 fragments. Science 229(4708):81–83PubMedCrossRefGoogle Scholar
  7. Burns-Hamuro LL, Ma Y, Kammerer S, Reineke U, Self C, Cook C, Olson GL, Cantor CR, Braun A, Taylor SS (2003) Designing isoform-specific peptide disruptors of protein kinase A localization. Proc Natl Acad Sci USA 100(7):4072–4077PubMedCrossRefGoogle Scholar
  8. Burton DR, Wilson IA (2007) Immunology. Square-dancing antibodies. Science 317(5844):1507–1508PubMedCrossRefGoogle Scholar
  9. Cardarelli PM, Quinn M, Buckman D, Fang Y, Colcher D, King DJ, Bebbington C, Yarronton G (2002) Binding of CD20 by anti-B1 antibody or F(ab’)2 is sufficient for induction of apoptosis in B-cell lines. Cancer Immunol Immunother 51:15–24PubMedCrossRefGoogle Scholar
  10. Carr DW, Stofko-Hahn RE, Fraser ID, Bishop SM, Acott TS, Brennan RG, Scott JD (1991) Interaction of the regulatory subunit (RII) of cAMP-dependent protein kinase with RII-anchoring proteins occurs through an amphipathic helix binding motif. J Biol Chem 266(22):14188–14192PubMedGoogle Scholar
  11. Chang C-H, Rossi EA, Goldenberg DM (2007) The dock and lock method: a novel platform technology for building multivalent, multifunctional structures of defined composition with retained bioactivity. Clin Cancer Res 13(18 Pt2):5586s–5591sPubMedCrossRefGoogle Scholar
  12. Chang CH, Rossi EA, Cardillo TM, Nordstrom DL, McBride WJ, Goldenberg DM (2009) A new method to produce monoPEGylated dimeric cytokines shown with human interferon-α2b. Bioconjug Chem 20(10):1899–1907PubMedCrossRefGoogle Scholar
  13. Colledge M, Scott JD (1999) AKAPs: from structure to function. Trends Cell Biol 9(6):216–222PubMedCrossRefGoogle Scholar
  14. Coloma MJ, Morrison SL (1997) Design and production of novel tetravalent bispecific antibodies. Nat Biotechnol 15(2):159–163PubMedCrossRefGoogle Scholar
  15. Cragg MS, Glennie MJ (2004) Antibody specificity controls in vivo effector mechanisms of anti-CD20 reagents. Blood 103(7):2738–2743PubMedCrossRefGoogle Scholar
  16. Cragg MS, Morgan SM, Chan HT, Morgan BP, Filatov AV, Johnson PWM, French RR, Glennie MJ (2003) Complement-mediated lysis by anti-CD20 mAb correlates with segregation into lipid rafts. Blood 101(3):1045–1052PubMedCrossRefGoogle Scholar
  17. Davis ME, Chen Z, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7(9):771–782PubMedCrossRefGoogle Scholar
  18. Deans JP, Polyak MJ (2002) CD20-mediated apoptosis: signaling through lipid rafts. Immunology 107(2):176–182PubMedCrossRefGoogle Scholar
  19. Du J, Wang H, Zhong C, Peng B, Zhang M, Li B, Huo S, Guo Y, Ding J (2007) Structural basis for recognition of CD20 by therapeutic antibody Rituximab. J Biol Chem 282(20):15073–15080PubMedCrossRefGoogle Scholar
  20. Ernst JA, Li H, Kim HS, Nakamura GR, Yansura DG, Vandlen RL (2005) Isolation and characterization of the B-cell marker CD20. Biochemistry 44(46):15150–15158PubMedCrossRefGoogle Scholar
  21. Fujimori K, Covell DG, Fletcher JE, Weinstein JN (1989) Modeling analysis of the global and microscopic distribution of immunoglobulin G, F(ab’)2, and Fab in tumors. Cancer Res 49(20):5656–5663PubMedGoogle Scholar
  22. Gegner JA, Dahlquist FW (1991) Signal transduction in bacteria: CheW forms a reversible complex with the protein kinase CheA. Proc Natl Acad Sci USA 88(3):750–754PubMedCrossRefGoogle Scholar
  23. Glennie MJ, McBride HM, Worth AT, Stevenson GT (1987) Preparation and performance of bispecific F(ab’ gamma)2 antibody containing thioether-linked Fab’ gamma fragments. J Immunol 139(7):2367–2375PubMedGoogle Scholar
  24. Gold DV, Goldenberg DM, Karacay H, Rossi EA, Chang C-H, Cardillo TM, McBride WJ, Sharkey RM (2008) A novel bispecific, trivalent antibody construct for targeting pancreatic carcinoma. Cancer Res 68(12):4819–4826PubMedCrossRefGoogle Scholar
  25. Gupta P, Goldenberg DM, Rossi EA, Chang C-H (2010) Multiple signaling pathways induced by hexavalent, monospecific, anti-CD20 and hexavalent, bispecific, anti-CD20/CD22 humanized antibodies correlate with enhanced toxicity to B-cell lymphomas and leukemias. Blood 116(17):3258–3267PubMedCrossRefGoogle Scholar
  26. Hey T, Fiedler E, Rudolph R, Fiedler M (2005) Artificial, non-antibody binding proteins for pharmaceutical and industrial applications. Trends Biotechnol 23(10):514–522PubMedCrossRefGoogle Scholar
  27. Hofmeister JK, Cooney D, Coggeshall KM (2000) Clustered CD20 induces apoptosis: src-family kinase, the proximal regulator of tyrosine phosphorylation, calcium influx, and caspase-dependent apoptosis. Blood Cells Mol Dis 26(2):133–143PubMedCrossRefGoogle Scholar
  28. Hosse RJ, Rothe A, Power BE (2006) A new generation of protein display scaffold for molecular recognition. Protein Sci 15(1):14–27PubMedCrossRefGoogle Scholar
  29. Hollander N (2009) Bispecific antibodies for cancer therapy. Immunotherapy 1(2):211–222PubMedCrossRefGoogle Scholar
  30. Kriangkum J, Xu B, Nagata LP, Fulton RE, Suresh MR (2001) Bispecific and bifunctional single chain recombinant antibodies. Biomol Eng 18(2):31–40PubMedCrossRefGoogle Scholar
  31. Labrijn AF, Buijsse AO, van den Bremer ETJ, Verwilligen AYW, Bleeker WK, Thorpe SJ, Killestein J, Polman CH, Aalberse RC, Schuurman J, van de Winkel JGJ, Parren PWHI (2009) Therapeutic IgG4 antibodies engage in Fab-arm exchange with endogenous human IgG4 in vivo. Nat Biotechnol 27(8):767–771PubMedCrossRefGoogle Scholar
  32. Li H, Ayer LM, Polyak MJ, Mutch CM, Petrie RJ, Gauthier L, Shariat N, Hendzel MJ, Shaw AR, Patel KD, Deans JP (2004) The CD20 calcium channel is localized to microvilli and constitutively associated with membrane rafts: antibody binding increases the affinity of the association through an epitope-dependent cross-linking-independent mechanism. J Biol Chem 279(19):19893–19901PubMedCrossRefGoogle Scholar
  33. Lu D, Zhang H, Ludwig D, Persaud A, Jimenez X, Burtrum D, Balderes P, Liu M, Bohlen P, Witte L, Zhu Z (2004) Simultaneous blockade of both the epidermal growth factor receptor and the insulin-like growth factor receptor signaling pathways in cancer cells with a fully human recombinant bispecific antibody. J Biol Chem 279(4):2856–2865PubMedCrossRefGoogle Scholar
  34. Lu D, Zhang H, Koo H, Tonra J, Balderes P, Prewett M, Corcoran E, Mangalampalli V, Bassi R, Anselma D, Patel D, Kang X, Ludwig DL, Hicklin DJ, Bohlen P, Witte L, Zhu Z (2005) A fully human recombinant IgG-like bispecific antibody to both the epidermal growth factor receptor and the insulin-like growth factor receptor for enhanced antitumor activity. J Biol Chem 280(20):19665–19672PubMedCrossRefGoogle Scholar
  35. Marvin JS, Zhu Z (2005) Recombinant approaches to IgG-like bispecific antibodies. Acta Pharmacol Sin 26(6):649–658PubMedCrossRefGoogle Scholar
  36. McBride WJ, Sharkey RM, Karacay H, D’Souza CA, Rossi EA, Laverman P, Chang C-H, Boerman OC, Goldenberg DM (2009) A novel method of 18F radiolabeling for PET. J Nucl Med 50(6):991–998PubMedCrossRefGoogle Scholar
  37. Milstein C, Cuello AC (1983) Hybrid hybridomas and their use in immunochemistry. Nature 305(5934):537–540PubMedCrossRefGoogle Scholar
  38. Mössner E, Brünker P, Moser S, Püntener U, Schmidt C, Herter S, Grau R, Gerdes C, Nopora A, van Puijenbroek E, Ferrara C, Sondermann P, Jäger C, Strein P, Fertig G, Friess T, Schüll C, Bauer S, Dal Porto J, Del Nagro C, Dabbagh K, Dyer MJ, Poppema S, Klein C, Umaña P (2010) Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood 115(22):4393–4402PubMedCrossRefGoogle Scholar
  39. Muller D, Kontermann RE (2007) Recombinant bispecific antibodies for cellular cancer immunotherapy. Curr Opin Mol Ther 9(4):319–326PubMedGoogle Scholar
  40. Newlon MG, Roy M, Morikis D, Hausken ZE, Coghlan V, Scott JD, Jennings PA (1999) The molecular basis for protein kinase A anchoring revealed by solution NMR. Nat Struct Biol 6(3):222–227PubMedCrossRefGoogle Scholar
  41. Newlon MG, Roy M, Morikis D, DW C, Westphal R, Scott JD, Jennings PA (2001) A novel mechanism of PKA anchoring revealed by solution structures of anchoring complexes. EMBO J 20(7):1651–1662PubMedCrossRefGoogle Scholar
  42. Pease LF III, Elliot JT, Tsai D-H, Zachariah MR, Tarlov MJ (2008) Determination of protein aggregation with different mobility analysis: application to IgG antibody. Biotechnol Bioeng 101(6):1214–1222PubMedCrossRefGoogle Scholar
  43. Perez P, Hoffman RW, Shaw S, Bluestone JA, Segal DM (1985) Specific targeting of cytotoxic T cells by anti-T3 linked to anti-target cell antibody. Nature 316(6026):354–356PubMedCrossRefGoogle Scholar
  44. Polyak MJ, Deans JP (2002) Alanine-170 and proline-172 are critical determinants for extracellular CD20 epitopes; heterogeneity in the fine specificity of CD20 monoclonal antibodies is defined by additional requirements imposed by both amino acid sequence and quaternary structure. Blood 99(9):3256–3262PubMedCrossRefGoogle Scholar
  45. Qu Z, Goldenberg DM, Cardillo TM, Shi V, Hansen HJ, Chang C-H (2008) Bispecific anti-CD20/22 antibodies inhibit B-cell lymphoma proliferation by a unique mechanism of action. Blood 111(4):2211–2219PubMedCrossRefGoogle Scholar
  46. Rossi EA, Sharkey RM, McBride W, Karacay H, Zeng L, Hansen HJ, Goldenberg DM, Chang C-H (2003) Development of new multivalent-bispecific agents for pretargeting tumor localization and therapy. Clin Cancer Res 9(10 Pt 2):3886s–3896sPubMedGoogle Scholar
  47. Rossi EA, Goldenberg DM, Cardillo TM, McBride WJ, Sharkey RM, Chang C-H (2006) Stably tethered multifunctional structures of defined composition made by the dock and lock method for use in cancer targeting. Proc Natl Acad Sci USA 103(18):6841–6846PubMedCrossRefGoogle Scholar
  48. Rossi EA, Goldenberg DM, Cardillo TM, Stein R, Wang Y, Chang C-H (2008) Novel designs of multivalent anti-CD20 humanized antibodies as improved lymphoma therapeutics. Cancer Res 68(20):8384–8392PubMedCrossRefGoogle Scholar
  49. Rossi EA, Goldenberg DM, Cardillo TM, Stein R, Chang C-H (2009) Hexavalent bispecific antibodies represent a new class of anticancer therapeutics. 1. Properties of anti-CD20/CD22 antibodies in lymphoma. Blood 113(24):6161–6171PubMedCrossRefGoogle Scholar
  50. Saga T, Neumann RD, Heya T, Sato J, Kinuya S, Le N, Paik CH, Weinstein JN (1995) Targeting cancer micrometastases with monoclonal antibodies: a binding-site barrier. Proc Natl Acad Sci USA 92(19):8999–9003PubMedCrossRefGoogle Scholar
  51. Schoffelen R, Sharkey RM, Goldenberg DM, Franssen G, McBride WJ, Rossi EA, Chang C-H, Laverman P, Disselhorst JA, Eek A, van der Graaf WT, Oyen WJ, Boerman OC (2010) Pretargeted immuno-positron emission tomography imaging of carcinoembryonic antigen-expressing tumors with a bispecific antibody and a 68Ga- and 18F-labeled hapten peptide in mice with human tumor xenografts. Mol Cancer Ther 9(4):1019–1027PubMedCrossRefGoogle Scholar
  52. Sharkey RM, Juweid M, Shevitz J, Behr T, Dunn R, Swayne LC, Wong GY, Blumenthal RD, Griffiths GL, Siegel JA, Leung S, Hansen HJ, Goldenberg DM (1995) Evaluation of a complementarity-determining region-grafted (humanized) anti-carcinoembryonic antigen monoclonal antibody in preclinical and clinical studies. Cancer Res 55(Suppl):5935s–5945sPubMedGoogle Scholar
  53. Sharkey RM, Karacay H, Vallabhajosula S, McBride WJ, Rossi EA, Chang C-H, Goldsmith SJ, Goldenberg DM (2008) Metastatic human colonic carcinoma: molecular imaging with pretargeted SPECT and PET in a mouse model. Radiology 246(2):497–507PubMedCrossRefGoogle Scholar
  54. Sharkey RM, Karacay H, Johnson CR, Litwin S, Rossi EA, McBride WJ, Chang C-H, Goldenberg DM (2009) Pretargeted versus directly targeted radioimmunotherapy combined with anti-CD20 antibody consolidation therapy of non-Hodgkin lymphoma. J Nucl Med 50(3):444–453PubMedCrossRefGoogle Scholar
  55. Sharkey RM, Rossi EA, McBride WJ, Chang C-H, Goldenberg DM (2010) Recombinant bispecific monoclonal antibodies prepared by the dock-and-lock strategy for pretargeted radioimmunotherapy. Semin Nucl Med 40(3):190–203PubMedCrossRefGoogle Scholar
  56. Shen J, Vil MD, Jimenez X, Iacolina M, Zhang H, Zhu Z (2006) Single variable domain-IgG fusion. A novel recombinant approach to Fc domain-containing bispecific antibodies. J Biol Chem 281(16):10706–10714PubMedCrossRefGoogle Scholar
  57. Shen J, Vil MD, Jimenez X, Zhang H, Lacolina M, Mangalampalli V, Balderes P, Ludwig DL, Zhu Z (2007) Single variable domain antibody as a versatile building block for the construction of IgG-like bispecific antibodies. J Immunol Methods 318(1–2):65–74PubMedCrossRefGoogle Scholar
  58. Staerz UD, Bevan MJ (1986) Hybrid hybridoma producing a bispecific monoclonal antibody that can focus effector T-cell activity. Proc Nat Acad Sci USA 83(5):1453–1457PubMedCrossRefGoogle Scholar
  59. Teeling JL, French RR, Cragg MS, van den Brakel J, Pluyter M, Huang H, Chan C, Parren PWH, Hack CE, Dechant M, Valerius T, van der Winkel JGJ, Glennie MJ (2004) Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphoma. Blood 104(6):1793–1800PubMedCrossRefGoogle Scholar
  60. Teeling JL, Mackus WJ, Wiegman LJ, van den Brakel J, Beers SA, French RR, van Meerten T, Ebeling S, Vink T, Slootsra JW, Parren PW, Glennie MJ, van de Winkel J (2006) The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J Immunol 177(1):362–371PubMedGoogle Scholar
  61. Unruh TL, Li H, Mutch CM, Shariat N, Grigoriou L, Sanyal R, Brown CB, Deans JP (2005) Cholesterol depletion inhibits src family kinase-dependent calcium mobilization and apoptosis induced by rituximab crosslinking. Immunology 116(2):223–232PubMedCrossRefGoogle Scholar
  62. van der Neut Kolfschoten M, Schuurman J, Losen M, Bleeker WK, Martinez-Martinex P, Vermeulen E, den Bleker TH, Wiegman L, Vink T, Aarden LA, De Baets MH, van der Winkel JG, Aalberse RC, Parren PW (2007) Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science 317(5844):1554–1557PubMedCrossRefGoogle Scholar
  63. van Rij C, Franssen G, Sharkey R, Frielink C, McBride B, Oyen W, Goldenberg D, Boerman O (2010) Pretargeted immunoPET imaging and radioimmunotherapy (RIT) of prostate cancer with an anti-EGP1 x anti-HSG bispecific antibody (bsMAb). J Nucl Med 51(Supplement 2):501Google Scholar
  64. Weinstein JN, van Osdol W (1992) Early intervention in cancer using monoclonal antibodies and other biological ligands: micropharmacology and the “binding site barrier”. Cancer Res 52(9 Suppl):2747s–2751sPubMedGoogle Scholar
  65. Wong W, Scott JD (2004) AKAP signaling complexes: focal points in space and time. Nat Rev Mol Cell Biol 5(12):959–970PubMedCrossRefGoogle Scholar
  66. Wu C, Ying H, Grinnell C, Bryant S, Miller R, Clabbers A, Bose S, McCarthy D, Zhu RR, Santora L, Davis-Taber R, Kunes Y, Fung E, Schwarz A, Sakorafas P, Gu J, Tarcsa E, Murtaza A, Ghayur T (2007) Simultaneous targeting of multiple disease mediators by a dual-variable-domain immunoglobulin. Nat Biotechnol 25(11):1290–1297PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Chien-Hsing Chang
    • 1
  • Edmund A. Rossi
    • 1
  • Robert M. Sharkey
    • 2
  • David M. Goldenberg
    • 2
  1. 1.Immunomedics, Inc.Morris PlainsUSA
  2. 2.Garden State Cancer Center, Center for Molecular Medicine and ImmunologyMorris PlainsUSA

Personalised recommendations