Advertisement

Flat Architectures: Towards Scalable Future Internet Mobility

  • László Bokor
  • Zoltán Faigl
  • Sándor Imre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6656)

Abstract

This chapter is committed to give a comprehensive overview of the scalability problems of mobile Internet nowadays and to show how the concept of flat and ultra flat architectures emerges due to its suitability and applicability for the future Internet. It also aims to introduce the basic ideas and the main paradigms behind the different flat networking approaches trying to cope with the continuously growing traffic demands. The discussion of the above areas will guide the readers from the basics of flat mobile Internet architectures to the paradigm’s complex feature set and power creating a novel Internet architecture for future mobile communications.

Keywords

mobile traffic evolution network scalability flat architectures mobile Internet IP mobility distributed and dynamic mobility management 

References

  1. 1.
    UMTS Forum White Paper: Recognising the Promise of Mobile Broadband (June 2010)Google Scholar
  2. 2.
    Cisco VNI: Global Mobile Data Traffic Forecast Update, 2009-2014 (Feb. 2010)Google Scholar
  3. 3.
    Dohler, M., Watteyne, T., Alonso-Zárate, J.: Machine-to-Machine: An Emerging Communication Paradigm, Tutorial. In: GlobeCom’10 (Dec. 2010)Google Scholar
  4. 4.
    Schulze, H., Mochalski, K.: Ipoque, Internet Study 2008/2009, Ipoque (Jan. 2011)Google Scholar
  5. 5.
    UMTS Forum, REPORT NO 37, Magic Mobile Future 2010-2020 (April 2005)Google Scholar
  6. 6.
    International Telecommunication Union, Press Release: ITU sees 5 billion mobile subscriptions globally in 2010 (February 2010)Google Scholar
  7. 7.
    Cisco VNI: Hyperconnectivity and the Approaching Zettabyte Era (June 2010)Google Scholar
  8. 8.
    ETSI GTS GSM 03.02-v5.1.0: Digital cellular telecommunications system (Phase 2+) - Network architecture (GSM 03.02) (1996)Google Scholar
  9. 9.
    3GPP TS 23.002: Network architecture, V10.1.1, Release 10 (Jan. 2011)Google Scholar
  10. 10.
    3GPP TR 23.919: Direct Tunnel Deployment Guideline, Release 7, V1.0.0 (May 2007)Google Scholar
  11. 11.
    3GPP TS 23.401: General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access, Rel.8, V8.12 (Dec. 2010)Google Scholar
  12. 12.
    3GPP TS 29.275, Proxy Mobile IPv6 (PMIPv6) based Mobility and Tunneling protocols, Stage 3, Release 10, V10.0.0 (Dec. 2010)Google Scholar
  13. 13.
    3GPP TS 24.303, Mobility management based on Dual-Stack Mobile IPv6, Stage 3, Release 10, V10.1.0 Dec (2010)Google Scholar
  14. 14.
    FemtoForum: Femtocells – Natural Solution for Offload – a Femto Forum brief (June 2010)Google Scholar
  15. 15.
    3GPP TR 23.829: Local IP Access and Selected IP Traffic Offload, Release 10, V1.3 (2010)Google Scholar
  16. 16.
    Daoud, K., Herbelin, P., Crespi, N.: UFA: Ultra Flat Architecture for high bitrate services in mobile networks. In: Proc. of PIMRC’08, Cannes, France, pp. 1–6 (2008)Google Scholar
  17. 17.
    Daoud, K., Herbelin, P., Guillouard, K., Crespi, N.: Performance and Implementation of UFA: a SIP-based Ultra Flat Mobile Network Architecture. In: Proc. of PIMRC (Sep. 2009)Google Scholar
  18. 18.
    Faigl, Z., Bokor, L., Neves, P., Pereira, R., Daoud, K., Herbelin, P.: Evaluation and comparison of signaling protocol alternatives for the Ultra Flat Architecture, ICSNC, pp. 1–9 (2010)Google Scholar
  19. 19.
    Bokor, L., Faigl, Z., Imre, S.: A Delegation-based HIP Signaling Scheme for the Ultra Flat Architecture. In: Proc. of the 2nd IWSCN, Karlstad, Sweden, pp. 9–16 (2010)Google Scholar
  20. 20.
    Faigl, Z., Bokor, L., Neves, P., Daoud, K., Herbelin, P.: Evaluation of two integrated signalling schemes for the ultra flat architecture using SIP, IEEE 802.21, and HIP/PMIP protocols. In: Journal of Computer Networks (2011), doi:10.1016/j.comnet.2011.02.005CrossRefGoogle Scholar
  21. 21.
    Johnson, D., Perkins, C., Arkko, J.: IP Mobility Support in IPv6, IETF RFC 3775 (2004)Google Scholar
  22. 22.
    Koodli, R. (ed.): Fast Handoffs for Mobile IPv6, IETF RFC 4068 (July 2005)Google Scholar
  23. 23.
    Soliman, H., Castelluccia, C., El Malki, K., Bellier, L.: Hierarchical Mobile IPv6 Mobility Management (HMIPv6), IETF RFC 4140 (Aug. 2005)Google Scholar
  24. 24.
    Wakikawa, R. (ed.): V. Devarapalli, G. Tsirtsis, T. Ernst, K. Nagami: Multiple Care-of Addresses Registration, IETF RFC 5648 (October 2009)Google Scholar
  25. 25.
    Devarapalli, V., Wakikawa, R., Petrescu, A., Thubert, P.: Network Mobility (NEMO) Basic Support Protocol, IETF RFC 3963 (Jan. 2005)Google Scholar
  26. 26.
    Soliman, H. (ed.): Mobile IPv6 Support for Dual Stack Hosts and Routers, IETF RFC 5555 (June 2009)Google Scholar
  27. 27.
    Gundavelli, S. (ed.): K. Leung, V. Devarapalli, K. Chowdhury, B. Patil: Proxy Mobile IPv6, IETF RFC 5213 (Aug. 2008)Google Scholar
  28. 28.
    Valko: Cellular IP: A New Approach to Internet Host Mobility, ACM SIGCOMM Comp. Commun. Rev., 29 (1), 50-65 (1999)CrossRefGoogle Scholar
  29. 29.
    Ramjee, R., Porta, T.L., Thuel, S., Varadhan, K., Wang, S.: HAWAII: A Domain-Based Approach for Supporting Mobility in Wide-area Wireless Networks. In: IEEE Int. Conf. Network Protocols (1999)Google Scholar
  30. 30.
    Grilo, A., Estrela, P., Nunes, M.: Terminal Independent Mobility for IP (TIMIP). IEEE Communications Magazine 39(12), 34–41 (2001)CrossRefGoogle Scholar
  31. 31.
    Melia, T., de la Oliva, A., Vidal, A., Soto, I., Corujo, D., Aguiar, R.L.: Toward IP converged heterogeneous mobility: A network controlled approach. Com. Networks 51 (2007)CrossRefGoogle Scholar
  32. 32.
    IEEE, IEEE Standard for Local and metropolitan area networks- Part 21: Media Independent Handover, IEEE Std 802.21-2008 (Jan. 2009)Google Scholar
  33. 33.
    3GPP TS 23.402, Architecture enhancements for non-3GPP accesses, Rel.10,V10.2 (2011)Google Scholar
  34. 34.
    Thubert, P., Wakikawa, R., Devarapalli, V.: Global HA to HA protocol, IETF Internet-Draft, draft-thubert-nemo-global-haha-02.txt (Sept. 2006)Google Scholar
  35. 35.
    Fischer, M., Andersen, F.-U., Kopsel, A., Schafer, G., Schlager, M.: A Distributed IP Mobility Approach for 3G SAE. In: Proc. of 19th PIMRC, ISBN: 978-1-4244-2643-0 (Sept. 2008)Google Scholar
  36. 36.
    Farha, R., Khavari, K., Abji, N., Leon-Garcia, A.: Peer-to-peer mobility management for all-ip networks. In: Proc. of ICC ’06, V. 5, pp. 1946–1952 (June 2006)Google Scholar
  37. 37.
    Bauer, M., Bosch, P., Khrais, N., Samuel, L.G., Schefczik, P.: The UMTS base station router. Bell Labs Tech. Journal, I. 11(4), 93–111 (2007)CrossRefGoogle Scholar
  38. 38.
    Liu Yu, Zhao Zhijun, Lin Tao, Tang Hui: Distributed mobility management based on flat network architecture. In: Proc. of 5th WICON, pp. 1-5, Singapore (2010)Google Scholar
  39. 39.
    Moskowitz, R., Nikander, P., Jokela, P. (eds.): T. Henderson: Host Identity Protocol, IETF RFC 5201 (April 2008)Google Scholar
  40. 40.
    Snoeren, A.C., Balakrishnan, H.: An End-to-End Approach to Host Mobility. In: Proc. of MobiCom (Aug. 2000)Google Scholar
  41. 41.
    Maltz, D., Bhagwat, P.: MSOCKS: An Architecture for Transport Layer Mobility. In: Proc. INFOCOM, pp. 1037-1045 (Mar 1998)Google Scholar
  42. 42.
    Stewart, R. (ed.): Stream Control Transmission Protocol, IETF RFC 4960 (Sept. 2007)Google Scholar
  43. 43.
    Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Handley, M., Schooler, E.: SIP: Session Initiation Protocol, IETF RFC 3261 (June 2002)Google Scholar
  44. 44.
    Bertin, P., Bonjour, S., Bonnin, J.-M.: A Distributed Dynamic Mobility Management Scheme Designed for Flat IP Architectures. In: Proc. of NTMS ’08, pp.1-5 (2008)Google Scholar
  45. 45.
    Bertin, P., Bonjour, S., Bonnin, J.: Distributed or centralized mobility? In: Proc. of the 28th IEEE conference on Global telecommunications (GLOBECOM’09), Honolulu, HI (2009)Google Scholar
  46. 46.
    Kassi-Lahlou, M., Jacquenet, C., Beloeil, L., Brouckaert, X.: Dynamic Mobile IP (DMI), IETF Internet-Draft, draft-kassi-mobileip-dmi-01.txt (Jan. 2003)Google Scholar
  47. 47.
    Song, M., Huang, J., Feng, R., Song, J.: A Distributed Dynamic Mobility Management Strategy for Mobile IP Networks. In: Proc. of 6th ITST, pp. 1045-1050 (June 2006)Google Scholar
  48. 48.
    Seite, P., Bertin, P.: Dynamic Mobility Anchoring, IETF Internet-Draft (May 2010)Google Scholar
  49. 49.
    Yan, Z., Lei, L., Chen, M.: WIISE - A Completely Flat and Distributed Architecture for Future Wireless Communication Systems, Wireless World Research Forum (Oct. 2008)Google Scholar
  50. 50.
    Gurtov, A., et al.: Hi3: An efficient and secure networking architecture for mobile hosts. Journal of Computer Communications 31(10), 2457–2467 (2008)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • László Bokor
    • 1
  • Zoltán Faigl
    • 1
  • Sándor Imre
    • 1
  1. 1.Department of Telecommunications, Mobile Communication and Computing Laboratory – Mobile Innovation CentreBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations