Skip to main content

Using Split Composition to Extend Distance-Hereditary Graphs in a Generative Way

(Extended Abstract)

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6648))

Abstract

In this paper we introduce a new graph class denoted as Gen( ∗ ;P 3,C 3,C 5). It contains all graphs that can be generated via split composition by using paths P 3 and cycles C 3 and C 5 as components. This new graph class extends the well known class of distance-hereditary graphs, which corresponds to Gen( ∗ ;P 3,C 3). For the new class we provide efficient algorithms for several basic combinatorial problems: recognition, stretch number, stability number, clique number, domination number, chromatic number, graph isomorphism, and clique width.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bandelt, H.J., Mulder, H.M.: Distance-hereditary graphs. J. Comb. Theory, Ser. B 41(2), 182–208 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brandstädt, A., Dragan, F.F.: A linear-time algorithm for connected r-domination and steiner tree on distance-hereditary graphs. Networks 31(3), 177–182 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chang, M.S., Hsieh, S.Y., Chen, G.H.: Dynamic programming on distance-hereditary graphs. In: Leong, H.-V., Jain, S., Imai, H. (eds.) ISAAC 1997. LNCS, vol. 1350, pp. 344–353. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  4. Cicerone, S.: Using split composition to extend distance-hereditary graphs in a generative way. Tech. Rep. TR.12.2011, Department of Electrical and Information Engineering, University of L’Aquila, Italy (2011)

    Google Scholar 

  5. Cicerone, S., Di Stefano, G.: Graph classes between parity and distance-hereditary graphs. Discrete Applied Mathematics 95(1-3), 197–216 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cicerone, S., Di Stefano, G.: On the extension of bipartite to parity graphs. Discrete Applied Mathematics 95(1-3), 181–195 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cicerone, S., Di Stefano, G.: Graphs with bounded induced distance. Discrete Applied Mathematics 108(1-2), 3–21 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cicerone, S., Di Stefano, G.: Networks with small stretch number. J. Discrete Algorithms 2(4), 383–405 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cicerone, S., Di Stefano, G., Flammini, M.: Compact-port routing models and applications to distance-hereditary graphs. J. Parallel Distrib. Comput. 61(10), 1472–1488 (2001)

    Article  MATH  Google Scholar 

  10. Cunningham, W.H.: Decomposition of directed graphs. SIAM. J. on Algebraic and Discrete Methods 3(2), 214–228 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dahlhaus, E.: Parallel algorithms for hierarchical clustering and applications to split decomposition and parity graph recognition. J. Algorithms 36(2), 205–240 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Di Stefano, G.: A routing algorithm for networks based on distance-hereditary topologies. In: SIROCCO, pp. 141–151 (1996)

    Google Scholar 

  13. Esfahanian, A.H., Oellermann, O.R.: Distance-hereditary graphs and multidestination message-routing in multicomputers. Journal of Combinatorial Mathematics and Combinatorial Computing 13, 213–222 (1993)

    MathSciNet  MATH  Google Scholar 

  14. Gabor, C.P., Supowit, K.J., Hsu, W.L.: Recognizing circle graphs in polynomial time. J. ACM 36(3), 435–473 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gioan, E., Paul, C.: Dynamic distance hereditary graphs using split decomposition. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 41–51. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Hammer, P.L., Maffray, F.: Completely separable graphs. Discrete Applied Mathematics 27(1-2), 85–99 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Howorka, E.: Distance-hereditary graphs. The Quarterly Journal of Mathematics 28(4), 417–420 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rao, M.: Clique-width of graphs defined by one-vertex extensions. Discrete Mathematics 308(24), 6157–6165 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rao, M.: Solving some NP-complete problems using split decomposition. Discrete Applied Mathematics 156(14), 2768–2780 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cicerone, S. (2011). Using Split Composition to Extend Distance-Hereditary Graphs in a Generative Way. In: Ogihara, M., Tarui, J. (eds) Theory and Applications of Models of Computation. TAMC 2011. Lecture Notes in Computer Science, vol 6648. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20877-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20877-5_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20876-8

  • Online ISBN: 978-3-642-20877-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics