Skip to main content

\(\it \Pi^0_1\) Sets and Tilings

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6648))

Abstract

In this paper, we prove that given any \(\it \Pi^0_1\) subset P of {0,1} there is a tileset τ with a countable set of configurations C such that P is recursively homeomorphic to C ∖ U where U is a computable set of configurations. As a consequence, if P is countable, this tileset has the exact same set of Turing degrees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballier, A., Durand, B., Jeandel, E.: Structural aspects of tilings. In: 25th International Symposium on Theoretical Aspects of Computer Science (STACS) (2008)

    Google Scholar 

  2. Berger, R.: The Undecidability of the Domino Problem. PhD thesis, Harvard University (1964)

    Google Scholar 

  3. Berger, R.: The Undecidability of the Domino Problem. Memoirs of the American Mathematical Society, vol. 66. The American Mathematical Society, Providence (1966)

    MATH  Google Scholar 

  4. Cenzer, D., Dashti, A., King, J.L.F.: Computable symbolic dynamics. Mathematical Logic Quarterly 54(5), 460–469 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cenzer, D., Dashti, A., Toska, F., Wyman, S.: Computability of Countable Subshifts. In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds.) CiE 2010. LNCS, vol. 6158, pp. 88–97. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Cenzer, D., Remmel, J.B.: \(\Pi_1^0\) classes in mathematics. In: Handbook of Recursive Mathematics - Volume 2: Recursive Algebra, Analysis and Combinatorics, ch. 13. Studies in Logic and the Foundations of Mathematics, vol. 139, pp. 623–821. Elsevier, Amsterdam (1998)

    Chapter  Google Scholar 

  7. Cenzer, D., Remmel, J.: Effectively Closed Sets. ASL Lecture Notes in Logic (2011) (in preparation)

    Google Scholar 

  8. Dashti, A.: Effective Symbolic Dynamics. PhD thesis, University of Florida (2008)

    Google Scholar 

  9. Durand, B., Levin, L.A., Shen, A.: Complex tilings. Journal of Symbolic Logic 73(2), 593–613 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hanf, W.: Non Recursive Tilings of the Plane I. Journal of Symbolic Logic 39(2), 283–285 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kechris, A.S.: Classical descriptive set theory. Graduate Texts in Mathematics, vol. 156. Springer, New York (1995)

    MATH  Google Scholar 

  12. Lind, D., Marcus, B.: An introduction to symbolic dynamics and coding. Cambridge University Press, New York (1995)

    Book  MATH  Google Scholar 

  13. Myers, D.: Non Recursive Tilings of the Plane II. Journal of Symbolic Logic 39(2), 286–294 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  14. Robinson, R.M.: Undecidability and Nonperiodicity for Tilings of the Plane. Inventiones Math. 12 (1971)

    Google Scholar 

  15. Simpson, S.: Mass Problems Associated with Effectively Closed Sets (in preparation)

    Google Scholar 

  16. Simpson, S.G.: Medvedev Degrees of 2-Dimensional Subshifts of Finite Type. Ergodic Theory and Dynamical Systems (2011)

    Google Scholar 

  17. Wang, H.: Proving theorems by Pattern Recognition II. Bell Systems Technical Journal 40, 1–41 (1961)

    Article  Google Scholar 

  18. Wang, H.: Dominoes and the ∀ ∃ ∀ case of the decision problem. Mathematical Theory of Automata, 23–55 (1963)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jeandel, E., Vanier, P. (2011). \(\it \Pi^0_1\) Sets and Tilings. In: Ogihara, M., Tarui, J. (eds) Theory and Applications of Models of Computation. TAMC 2011. Lecture Notes in Computer Science, vol 6648. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20877-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20877-5_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20876-8

  • Online ISBN: 978-3-642-20877-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics