Advertisement

Zusammenfassung

Die zunehmenden Möglichkeiten der Fundusbildgebung waren eine wichtige Voraussetzung für die Forschungsfortschritte bei Netzhauterkrankungen. Die monochromatische und die Farbphotographie boten Lichtbildaufnahmen des Augenhintergrundes. Die Einführung der Fluoreszein-Angiographie ermöglichte es Ophthalmologen, die vaskuläre Anatomie und Physiologie in zuvor unerreichbarer Weise zu untersuchen und zu dokumentieren [1]. Die Angiographie mit Indozyaningrün erweiterte die Möglichkeiten, den okulären Blutkreislauf abzubilden, insbesondere den der Choroidea [2]. Mit Hilfe dieser Farbstoffe wurde es möglich, indirekt Informationen über andere Schichten des Augenhintergrundes zu erhalten, im Speziellen über das retinale Pigmentepithel (RPE). Diese indirekten Methoden umfassen die Suche nach einer erhöhten oder verminderten Transmission der darunterliegenden choroidalen Fluoreszenz, eine Beurteilung der Menge von Färbung und Leckage sowie die Nutzung stereoskoper Hinweise zur Konturbestimmung auf der Ebene des RPE.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Spaide RF (1999) Fluorescein Angiography. In: Spaide RF (ed) Diseases of the Retina and Vitreous. Saunders, Philadelphia, p 29–38Google Scholar
  2. [2]
    Tittl MK, Slakter JS, Spaide RF, Sorenson J, Guyer D (1999) Indocyanine Green Videoangiography. In Spaide, RF. Diseases of the Retina and Vitreous. Saunders, Philadelphia, pp 39–46Google Scholar
  3. [3]
    Holz F, Schmitz-Valckenberg S, Spaide RF, Bird AC (2007) Atlas of Fundus Autofluorescence Imaging. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  4. [4]
    Delori FC, Dorey CK, Staurenghi G, et al. (1995) In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Invest Ophthalmol Vis Sci 36:718–29PubMedGoogle Scholar
  5. [5]
    von Ruckmann A, Fitzke FW, Bird AC (1995) Distribution of fundus autofluorescence with a scanning laser ophthalmoscope. Br J Ophthalmol 79:407–12PubMedCrossRefGoogle Scholar
  6. [6]
    Eldred GE, Katz ML (1988) Fluorophores of the human retinal pigment epithelium: separation and spectral characterization. Exp Eye Res 47:71–86PubMedCrossRefGoogle Scholar
  7. [7]
    Eldred GE (1995) Lipofuscin fluorophore inhibits lysosomal protein degradation and may cause early stages of macular degeneration. Gerontology 41 (Suppl 2):15–28PubMedCrossRefGoogle Scholar
  8. [8]
    Gaillard ER, Atherton SJ, Eldred G, Dillon J (1995) Photophysical studies on human retinal lipofuscin. Photochem Photobiol 61:448–53PubMedCrossRefGoogle Scholar
  9. [9]
    Suter M, Reme C, Grimm C, et al. (2000) Age-related macular degeneration. The lipofuscin component n-retinyl-n-retinylidene ethanolamine detaches proapoptotic proteins from mitochondria and induces apoptosis in mammalian retinal pigment epithelial cells. J Biol Chem 275:39625–30PubMedCrossRefGoogle Scholar
  10. [10]
    Sparrow JR, Nakanishi K, Parish CA (2000) The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. Invest Ophthalmol Vis Sci 41:1981–9.PubMedGoogle Scholar
  11. [11]
    Liu J, Itagaki Y, Ben-Shabat S, Nakanishi K, Sparrow JR (2000) The biosynthesis of A2E, a fluorophore of aging retina, involves the formation of the precursor, A2-PE, in the photoreceptor outer segment membrane. J Biol Chem :29354–60Google Scholar
  12. [12]
    Fishkin N, Jang YP, Itagaki Y, et al. (2003) A2-rhodopsin: a new fluorophore isolated from photoreceptor outer segments. Org Biomol Chem 1:1101–5PubMedCrossRefGoogle Scholar
  13. [13]
    Dillon J, Wang Z, Avalle LB, Gaillard ER (2004) The photochemical oxidation of A2E results in the formation of a 5,8,5’,8’-bisfuranoid oxide. Exp Eye Res 79:537–42PubMedCrossRefGoogle Scholar
  14. [14]
    Avalle LB, Wang Z, Dillon JP, Gaillard ER (2004) Observation of A2E oxidation products in human retinal lipofuscin. Exp Eye Res 78:895–8PubMedCrossRefGoogle Scholar
  15. [15]
    Sparrow JR, Zhou J, Ben-Shabat S, et al. (2002) Involvement of oxidative mechanisms in blue-light-induced damage to A2Eladen RPE. Invest Ophthalmol Vis Sci 43:1222–7PubMedGoogle Scholar
  16. [16]
    Fox IJ, Wood EH (1957) Application of dilution curves recorded from the right side of the heart or venous circulation with the aid of a new indicator dye. Proc Mayo Clin 32:541Google Scholar
  17. [17]
    Kwiterovich KA, Maguire MG, Murphy RP, et al. (1991) Frequency of adverse systemic reactions after fluorescein angiography. Results of a prospective study. Ophthalmology 98:1139–42PubMedGoogle Scholar
  18. [18]
    Yannuzzi LA, Rohrer KT, Tindel LJ, et al. (1986) Fluorescein angiography complication survey. Ophthalmology 93:611–7PubMedGoogle Scholar
  19. [19]
    Hope-Ross M, Yannuzzi LA, Gragoudas ES, et al. (1994) Adverse reactions due to indocyanine green. Ophthalmology 101:529–33PubMedGoogle Scholar
  20. [20]
    Obana A, Miki T, Hayashi K, et al. (1994) Survey of complications of indocyanine green angiography in Japan. Am J Ophthalmol 118:749–53PubMedGoogle Scholar
  21. [21]
    Fineman MS, Maguire JI, Fineman SW, Benson WE (2001) Safety of indocyanine green angiography during pregnancy: a survey of the retina, macula, and vitreous societies. Arch Ophthalmol 119:353–5PubMedGoogle Scholar
  22. [22]
    Costa DL, Huang SJ, Orlock DA, et al. (2003) Retinal-choroidal indocyanine green dye clearance and liver dysfunction. Retina 23:557–61PubMedCrossRefGoogle Scholar
  23. [23]
    Spaide RF, Koizumi H, Pozonni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146:496–500PubMedCrossRefGoogle Scholar
  24. [24]
    Zweifel SA, Spaide RF, Curcio CA, Malek G, Imamura Y (2010) Reticular Pseudodrusen Are Subretinal Drusenoid Deposits. Ophthalmology 117:303–312.e1PubMedCrossRefGoogle Scholar
  25. [25]
    Pauleikhoff D, Zuels S, Sheraidah GS, et al. (1992) Correlation between biochemical composition and fluorescein binding of deposits in Bruch’s membrane. Ophthalmology 99: 1548–53PubMedGoogle Scholar
  26. [26]
    Arnold JJ, Quaranta M, Soubrane G, et al. (1997) Indocyanine green angiography of drusen. Am J Ophthalmol 124:344–56PubMedGoogle Scholar
  27. [27]
    Spaide RF (2003) Fundus autofluorescence and age-related macular degeneration. Ophthalmology. 2003;110:392–9PubMedCrossRefGoogle Scholar
  28. [28]
    Holz FG, Bellmann C, Margaritidis M, et al. (1999) Patterns of increased in vivo fundus autofluorescence in the junctional zone of geographic atrophy of the retinal pigment epithelium associated with age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 237:145–52PubMedCrossRefGoogle Scholar
  29. [29]
    Hartnett ME, Weiter JJ, Staurenghi G, Elsner AE (1996) Deep retinal vascular anomalous complexes in advanced age–related macular degeneration. Ophthalmology 1996;103:2042–53PubMedGoogle Scholar
  30. [30]
    Yannuzzi LA, Negrao S, Iida T, et al. (2001) Retinal angiomatous proliferation in age-related macular degeneration. Retina 21:416–34PubMedCrossRefGoogle Scholar
  31. [31]
    Gass JD, Agarwal A, Lavina AM, Tawansy KA (2003) Focal inner retinal hemorrhages in patients with drusen: an early sign of occult choroidal neovascularization and chorioretinal anastomosis. Retina 23:741–51PubMedCrossRefGoogle Scholar
  32. [32]
    Schmidt-Erfurth U, Michels S, Barbazetto I, Laqua H (2002) Photodynamic effects on choroidal neovascularization and physiological choroid. Invest Ophthalmol Vis Sci 43:830–41PubMedGoogle Scholar
  33. [33]
    Spaide RF, Leys A, Herrmann-Delemazure B, et al. (1999) Radiation- associated choroidal neovasculopathy. Ophthalmology 106:2254–60PubMedCrossRefGoogle Scholar
  34. [34]
    Spaide R (2008) Autofluorescence from the outer retina and subretinal space: hypothesis and review. Retina 28:5–35PubMedCrossRefGoogle Scholar
  35. [35]
    Spaide RF, Curcio CA (2010) Drusen characterization with multimodal imaging. Retina 30:1441–54PubMedCrossRefGoogle Scholar
  36. [36]
    Spaide RF (2009) Enhanced depth imaging optical coherence tomography of retinal pigment epithelial detachment in agerelated macular degeneration. Am J Ophthalmol 147:644–52PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Richard F. Spaide
    • 1
  1. 1.Vitreous-Retina-Macula ConsultantsNew YorkUSA

Personalised recommendations