Advertisement

Histopathologie

  • Albrecht Lommatzsch
  • Susanne Wasmuth
  • Daniel Pauleikhoff
  • F. G. Holz
  • A. C. Bird

Zusammenfassung

Das retinale Pigmentepithel (PRE) grenzt mit seiner Basalmembran an die Bruch-Membran und Kapillaren der Aderhaut (Choriokapillaris ). Apikal steht es mit seinen Mikrowellen in engem Kontakt zu den Photorezeptoraußensegmenten. In einem komplizierten Stoffwechselaustausch zwischen Netzhaut und Aderhaut kommt dem RPE eine Schlüsselfunktion zu. Neben der Aufbereitung des Sehpigments im Sehzyklus werden die Membranscheiben der Photorezeptoraußensegmente durch die RPE-Zelle phagozytiert und in Richtung Choriokapillaris abgegeben. Weiterhin reguliert die Pumpfunktion des RPE das extrazelluläre Ionenmillieu der Photorezeptoren. Ein auf diese Weise erzeugter osmotischer Unterdruck sorgt gleichfalls auch für eine Adhäsion der Netzhaut am RPE und ist ein wichtiger Bestandteil zur Verhinderung von Netzhautablösungen. Produktion und Sekretion verschiedener Wachstumsfaktoren reguliert das Milieu für die Aufrechterhaltung der funktionellen Einheit aus Photorezeptoren, RPE und Choriokapillaris.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    [No authors listed] (1991) Subfoveal neovascular lesions in age-related macular degeneration. Guidelines for evaluation and treatment in the macular photocoagulation study. Macular Photocoagulation Study Group. Archives of ophthalmology 109: 1242–1257Google Scholar
  2. [2]
    Ahir A, Guo L, Hussain AA, Marshall J (2002) Expression of metalloproteinases from human retinal pigment epithelial cells and their effects on the hydraulic conductivity of Bruch’s membrane. Investigative ophthalmology & visual science 43: 458–465Google Scholar
  3. [3]
    Aisenbrey S, Zhang M, Bacher D, Yee J, Brunken WJ, Hunter DD (2006) Retinal pigment epithelial cells synthesize laminins, including laminin 5, and adhere to them through alpha3- and alpha6-containing integrins. Investigative ophthalmology & visual science 47: 5537–5544Google Scholar
  4. [4]
    Archer DB, Gardiner TA (1981a) Electron microscopic features of experimental choroidal neovascularization. American journal of ophthalmology 91: 433–457Google Scholar
  5. [5]
    Archer DB, Gardiner TA (1981b) Morphologic fluorescein angiographic, and light microscopic features of experimental choroidal neovascularization. American journal of ophthalmology 91: 297–311Google Scholar
  6. [6]
    Arroyo JG, Yang L, Bula D. Chen DF (2005) Photoreceptor apoptosis in human retinal detachment. American journal of ophthalmology 139: 605–610PubMedGoogle Scholar
  7. [7]
    Bairati A, Jr, Orzalesi N (1963) The Ultrastructure of the Pigment Epithelium and of the Photoreceptor-Pigment Epithelium Junction in the Human Retina. Journal of ultrastructure research 41: 484–496PubMedGoogle Scholar
  8. [8]
    Barondes M, Pauleikhoff D, Chisholm IC, Minassian D, Bird AC (1990) Bilaterality of drusen. The British journal of ophthalmology 74: 180–182PubMedGoogle Scholar
  9. [9]
    Barondes MJ, Pagliarini S, Chisholm IH, Hamilton AM, Bird AC (1992) Controlled trial of laser photocoagulation of pigment epithelial detachments in the elderly: 4 year review. The British journal of ophthalmology 76: 5–7PubMedGoogle Scholar
  10. [10]
    Bird AC (1991) Doyne Lecture. Pathogenesis of retinal pigment epithelial detachment in the elderly; the relevance of Bruch’s membrane change. Eye (London, England) 5 (Pt 1): 1–12Google Scholar
  11. [11]
    Bird AC (1993) Choroidal neovascularisation in age-related macular disease. The British journal of ophthalmology 77: 614–615PubMedGoogle Scholar
  12. [12]
    Bird AC, Marshall J (1986) Retinal pigment epithelial detachments in the elderly. Transactions of the ophthalmological societies of the United Kingdom 105 (Pt 6): 674–682PubMedGoogle Scholar
  13. [13]
    Bok D (1985) Retinal photoreceptor-pigment epithelium interactions. Friedenwald lecture. Investigative ophthalmology & visual science 26: 1659–1694Google Scholar
  14. [14]
    Bressler NM, Bressler SB, Fine SL (1988a) Age-related macular degeneration. Survey of ophthalmology 32: 375–413Google Scholar
  15. [15]
    Bressler NM, Bressler SB, Gragoudas ES (1987) Clinical characteristics of choroidal neovascular membranes. Archives of ophthalmology 105. 209–213PubMedGoogle Scholar
  16. [16]
    Bressler NM, Bressler SB, Seddon JM; Gragoudas ES Jacobson LP (1988b) Drusen characteristics in patients with exudative versus non-exudative age-related macular degeneration. Retina (Philadelphia, Pa) 8: 109–114Google Scholar
  17. [17]
    Burns RP, Feeney-Burns L (1980) Clinico-morphologic correlations of drusen of Bruch’s membrane. Transactions of the American Ophthalmological Society 78: 206–225PubMedGoogle Scholar
  18. [18]
    Campochiaro PA, Jerdon JA, Glaser BM (1986) The extracellular matrix of human retinal pigment epithelial cells in vivo and its synthesis in vitro. Investigative ophthalmology & visual science 27: 1615–1621Google Scholar
  19. [19]
    Capon MR, Marshall J, Krafft JI, Alexander RA, Hiscott PS, Bird AC (1989) Sorsby’s fundus dystrophy. A light and electron microscopic study. Ophthalmology 96: 1769–1777PubMedGoogle Scholar
  20. [20]
    Casswell AG, Kohen D, Bird AC (1985) Retinal pigment epithelial detachments in the elderly: classification and outcome. The British journal of ophthalmology 69: 397–403PubMedGoogle Scholar
  21. [21]
    Chang CJ, Lai WW, Edward DP, Tso MO (1995) Apoptotic photoreceptor cell death after traumatic retinal detachment in humans. Archives of ophthalmology 113: 880–886PubMedGoogle Scholar
  22. [22]
    Chen JC, Fitzke FW, Pauleikhoff D, Bird AC (1992) Functional loss in age-related Bruch’s membrane change with choroidal perfusion defect. Investigative ophthalmology & visual science 33: 334–340Google Scholar
  23. [23]
    Chuang EL, Bird AC (1988) The pathogenesis of tears of the retinal pigment epithelium. American journal of ophthalmology 105: 285–290PubMedGoogle Scholar
  24. [24]
    Coffey AJ, Brownstein S (1986) The prevalence of macular drusen in postmortem eyes. American journal of ophthalmology 102: 164–171PubMedGoogle Scholar
  25. [25]
    Curcio CA, Johnson M, Huang JD, Rudolf M (2009) Aging, agerelated macular degeneration, and the response-to-retention of apolipoprotein B-containing lipoproteins. Progress in retinal and eye research 28: 393–422PubMedGoogle Scholar
  26. [26]
    Curcio CA, Millican CL (1999) Basal linear deposit and large drusen are specific for early age-related maculopathy. Archives of ophthalmology 117: 329–339PubMedGoogle Scholar
  27. [27]
    Curcio CA, Millican CL, Bailey T, Kruth HS (2001) Accumulation of cholesterol with age in human Bruch’s membrane. Investigative ophthalmology & visual science 42: 265–274Google Scholar
  28. [28]
    Curcio CA, Presley JB, Malek G, Medeiros NE, Avery DV, Kruth HS (2005) Esterified and unesterified cholesterol in drusen and basal deposits of eyes with age-related maculopathy. Experimental eye research 81: 731–741PubMedGoogle Scholar
  29. [29]
    Dastgheib K, Green WR (1994) Granulomatous reaction to Bruch’s membrane in age-related macular degeneration. Archives of ophthalmology 112: 813–818PubMedGoogle Scholar
  30. [30]
    Davis WL, Jones RG, Hagler HK (1981) An electron microscopic histochemical and analytical X-ray microprobe study of calcification in Bruch’s membrane from human eyes. J Histochem Cytochem 29: 601–608PubMedGoogle Scholar
  31. [31]
    Delori FC, Dorey CK, Staurenghi G, Arend O, Goger DG, Weiter JJ (1995) In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Investigative ophthalmology & visual science 36: 718–729Google Scholar
  32. [32]
    Dithmar S, Sharara NA, Curcio CA, Le NA, Zhang Y, Brown S, Grossniklaus HE (2001) Murine high-fat diet and laser photochemical model of basal deposits in Bruch membrane. Archives of ophthalmology 119: 1643–1649PubMedGoogle Scholar
  33. [33]
    Dorey CK, Wu G, Ebenstein D, Garsd A, Weiter JJ (1989) Cell loss in the aging retina. Relationship to lipofuscin accumulation and macular degeneration. Investigative ophthalmology & visual science 30: 1691–1699Google Scholar
  34. [34]
    Farkas TG, Sylvester V, Archer D (1971) The ultrastructure of drusen. American journal of ophthalmology 71: 1196–1205PubMedGoogle Scholar
  35. [35]
    Feeney-Burns L, Ellersieck MR (1985) Age-related changes in the ultrastructure of Bruch’s membrane. American journal of ophthalmology 100: 686–697PubMedGoogle Scholar
  36. [36]
    Fisher RF (1982) The water permeability of basement membrane under increasing pressure: evidence for a new theory of permeability. Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character 216: 475–496Google Scholar
  37. [37]
    Fisher RF (1987) The influence of age on some ocular basement membranes. Eye (London, England) 1 (Pt 2): 184–189Google Scholar
  38. [38]
    Foulds WS (1976) Doyne Memorial Lecture 1976. Clinical significance of trans-scleral fluid transfer. Transactions of the ophthalmological societies of the United Kingdom 96: 290–308PubMedGoogle Scholar
  39. [39]
    Gamulescu MA, Renner AB, Helbig H (2009) [Clinical manifestations of functional disturbances of the retinal pigment epithelium]. Ophthalmologe 106: 305–310PubMedGoogle Scholar
  40. [40]
    Gass JD (1967) Pathogenesis of disciform detachment of the neuroepithelium. American journal of ophthalmology 63: Suppl:1–139PubMedGoogle Scholar
  41. [41]
    Gass JD (1973) Drusen and disciform macular detachment and degeneration. Archives of ophthalmology 90: 206–217PubMedGoogle Scholar
  42. [42]
    Gass JD (1984) Pathogenesis of tears of the retinal pigment epithelium. The British journal of ophthalmology 68: 513–519PubMedGoogle Scholar
  43. [43]
    Green WR, Enger C (1993) Age-related macular degeneration histopathologic studies. The 1992 Lorenz E. Zimmerman Lecture. Ophthalmology 100: 1519–1535PubMedGoogle Scholar
  44. [44]
    Green WR, Key SN, 3rd (1977) Senile macular degeneration: a histopathologic study. Transactions of the American Ophthalmological Society 75: 180–254PubMedGoogle Scholar
  45. [45]
    Green WR, McDonnell PJ, Yeo JH (1985) Pathologic features of senile macular degeneration. Ophthalmology 92: 615–627PubMedGoogle Scholar
  46. [46]
    Grossniklaus HE, Gass JD (1998) Clinicopathologic correlations of surgically excised type 1 and type 2 submacular choroidal neovascular membranes. American journal of ophthalmology 126: 59–69PubMedGoogle Scholar
  47. [47]
    Grossniklaus HE, Green WR (1998) Histopathologic and ultrastructural findings of surgically excised choroidal neovascularization. Submacular Surgery Trials Research Group. Archives of ophthalmology 116: 745–749PubMedGoogle Scholar
  48. [48]
    Grossniklaus HE, Hutchinson AK, Capone A, Jr, Woolfson J, Lambert HM (1994) Clinicopathologic features of surgically excised choroidal neovascular membranes. Ophthalmology 101: 1099–1111PubMedGoogle Scholar
  49. [49]
    Guo L, Hussain AA, Limb GA, Marshall J (1999) Age-dependent variation in metalloproteinase activity of isolated human Bruch’s membrane and choroid. Investigative ophthalmology & visual science 40: 2676–2682Google Scholar
  50. [50]
    Guymer R, Luthert P, Bird A (1999) Changes in Bruch’s membrane and related structures with age. Progress in retinal and eye research 18: 59–90PubMedGoogle Scholar
  51. [51]
    Haimovici R, Gantz DL, Rumelt S, Freddo TF, Small DM (2001) The lipid composition of drusen, Bruch’s membrane, and sclera by hot stage polarizing light microscopy. Investigative ophthalmology & visual science 42: 1592–1599Google Scholar
  52. [52]
    Hamlin CR, Kohn RR (1971) Evidence for progressive, age-related structural changes in post–mature human collagen. Biochimica et biophysica acta 236: 458–467PubMedGoogle Scholar
  53. [53]
    Handa JT, Verzijl N, Matsunaga H, Aotaki-Keen A, Lutty GA, te Koppele JM, Miyata T, Hjelmeland LM (1999) Increase in the advanced glycation end product pentosidine in Bruch’s membrane with age. Investigative ophthalmology & visual science 40: 775–779Google Scholar
  54. [54]
    Hao W, Wenzel A, Obin MS, Chen CK, Brill E, Krasnoperova NV, Eversole-Cire P, Kleyner Y, Taylor A, Simon MI, et al: (2002) Evidence for two apoptotic pathways in light-induced retinal degeneration. Nature genetics 32: 254–260PubMedGoogle Scholar
  55. [55]
    Hermans P, Lommatzsch A, Bomfeld N, Pauleikhoff D (2003) [Angiographic-histological correlation of late exudative agerelated macular degeneration]. Ophthalmologe 100: 378–383PubMedGoogle Scholar
  56. [56]
    Ho TC, Del Priore LV (1997) Reattachment of cultured human retinal pigment epithelium to extracellular matrix and human Bruch’s membrane. Investigative ophthalmology & visual science 38: 1110–1118Google Scholar
  57. [57]
    Hogan MJ (1965) Macular Diseases: Pathogenesis. Electron Microscopy of Bruch’s Membrane. Transactions – American Academy of Ophthalmology and Otolaryngology 69: 683–690PubMedGoogle Scholar
  58. [58]
    Holz FG, Sheraidah G, Pauleikhoff D, Bird AC (1994) Analysis of lipid deposits extracted from human macular and peripheral Bruch’s membrane. Archives of ophthalmology 112: 402–406PubMedGoogle Scholar
  59. [59]
    Howard EW, Benton R, Ahern-Moore J, Tomasek JJ (1996) Cellular contraction of collagen lattices is inhibited by nonenzymatic glycation. Experimental cell research 228: 132–137PubMedGoogle Scholar
  60. [60]
    Huang JD, Presley JB, Chimento MF, Curcio CA, Johnson M (2007) Age-related changes in human macular Bruch’s membrane as seen by quick-freeze/deep-etch. Experimental eye research 85. 202–218PubMedGoogle Scholar
  61. [61]
    Hussain AA, Rowe L, Marshall J (2002) Age-related alterations in the diffusional transport of amino acids across the human Bruch’s-choroid complex. Journal of the Optical Society of America 19: 166–172PubMedGoogle Scholar
  62. [62]
    Hyman L, Schachat AP, He Q, Leske MC (2000) Hypertension, cardiovascular disease, and age-related macular degeneration. Age-Related Macular Degeneration Risk Factors Study Group. Archives of ophthalmology 118: 351–358PubMedGoogle Scholar
  63. [63]
    Ishibashi T, Murata T, Hangai M, Nagai R, Horiuchi S, Lopez PF, Hinton DR, Ryan SJ (1998) Advanced glycation end products in age-related macular degeneration. Archives of ophthalmology 116: 1629–1632PubMedGoogle Scholar
  64. [64]
    Ishibashi T, Patterson R, Ohnishi Y, Inomata H, Ryan SJ (1986a) Formation of drusen in the human eye. American journal of ophthalmology 101: 342–353Google Scholar
  65. [65]
    Ishibashi T, Sorgente N, Patterson R, Ryan SJ (1986b) Pathogenesis of drusen in the primate. Investigative ophthalmology & visual science 27: 184–193Google Scholar
  66. [66]
    Johnson M, Dabholkar A, Huang JD, Presley JB, Chimento MF, Curcio CA (2007) Comparison of morphology of human macular and peripheral Bruch’s membrane in older eyes. Current eye research 32: 791–799PubMedGoogle Scholar
  67. [67]
    Kamei M, Hollyfield JG (1999) TIMP-3 in Bruch’s membrane: changes during aging and in age-related macular degeneration. Investigative ophthalmology & visual science 40: 2367–2375Google Scholar
  68. [68]
    Karwatowski WS, Jeffries TE, Duance VC, Albon J, Bailey AJ, Easty DL (1995) Preparation of Bruch’s membrane and analysis of the age-related changes in the structural collagens. The British journal of ophthalmology 79: 944–952PubMedGoogle Scholar
  69. [69]
    Killingsworth MC, Sarks JP, Sarks SH (1990) Macrophages related to Bruch’s membrane in age-related macular degeneration. Eye (London, England) 4 (Pt 4): 613–621Google Scholar
  70. [70]
    Kliffen M, Mooy CM, Luider TM, de Jong PT (1994) Analysis of carbohydrate structures in basal laminar deposit in aging human maculae. Investigative ophthalmology & visual science 35: 2901–2905Google Scholar
  71. [71]
    Kliffen M, Mooy CM, Luider TM, Huijmans JG, Kerkvliet S, de Jong PT (1996) Identification of glycosaminoglycans in agerelated macular deposits. Archives of ophthalmology 114: 1009–1014PubMedGoogle Scholar
  72. [72]
    Krishnamurti U, Rondeau E, Sraer JD, Michael AF, Tsilibary EC (1997) Alterations in human glomerular epithelial cells interacting with nonenzymatically glycosylated matrix. The Journal of biological chemistry 272: 27966–27970PubMedGoogle Scholar
  73. [73]
    Kunze A, Abari E, Semkova I, Paulsson M, Hartmann U (2009) Deposition of nidogens and other basement membrane proteins in the young and aging mouse retina. Ophthalmic research 43: 108–112PubMedGoogle Scholar
  74. [74]
    Lafaut BA, Aisenbrey S, Van den Broecke C, Krott R, Jonescu-Cuypers CP, Reynders S, Bartz-Schmidt KU (2001) Clinicopathological correlation of retinal pigment epithelial tears in exudative age related macular degeneration: pretear, tear, and scarred tear. The British journal of ophthalmology 85: 454–460PubMedGoogle Scholar
  75. [75]
    Loffler KU, Lee WR (1986) Basal linear deposit in the human macula Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie 224: 493–501Google Scholar
  76. [76]
    Lommatzsch A, Heimes B, Gutfleisch M, Spital G, Zeimer M, Pauleikhoff D (2009) Serous pigment epithelial detachment in age-related macular degeneration: comparison of different treatments. Eye (London, England) 23: 2163–2168Google Scholar
  77. [77]
    Lommatzsch A, Hermans P, Muller KD, Bornfeld N, Bird AC, Pauleikhoff D (2008) Are low inflammatory reactions involved in exudative age-related macular degeneration? Morphological and immunhistochemical analysis of AMD associated with basal deposits. Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie 246: 803–810PubMedGoogle Scholar
  78. [78]
    Marshall GE, Konstas AG, Reid GG, Edwards JG, Lee WR (1994) Collagens in the aged human macula. Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie 232: 133–140PubMedGoogle Scholar
  79. [79]
    Marshall J (1987) The ageing retina: physiology or pathology. Eye (London, England) 1 (Pt 2): 282–295Google Scholar
  80. [80]
    Marshall J, Hussain AA, Starita C, Moore DJ, Patmore AL (1998) Aging and Bruch’s Membrane: In: Marmor MF, Wolfensberger TJ (eds) The Retinal Pigment Epithelium: Function and Disease. Oxford University Press, pp. 669–692Google Scholar
  81. [81]
    Martinez GS, Campbell AJ, Reinken J, Allan BC (1982) Prevalence of ocular disease in a population study of subjects 65 years old and older. American journal of ophthalmology 94: 181–189PubMedGoogle Scholar
  82. [82]
    Miller H, Miller B, Ryan SJ (1986a) Newly-formed subretinal vessels. Fine structure and fluorescein leakage. Investigative ophthalmology & visual science 27. 204–213Google Scholar
  83. [83]
    Miller H, Miller B, Ryan SJ (1986b) The role of retinal pigment epithelium in the involution of subretinal neovascularization. Investigative ophthalmology & visual science 27: 1644–1652Google Scholar
  84. [84]
    Moore DJ, Hussain AA, Marshall J (1995) Age-related variation in the hydraulic conductivity of Bruch’s membrane. Investigative ophthalmology & visual science 36: 1290–1297Google Scholar
  85. [85]
    Mullins RF, Aptsiauri N, Hageman, GS (2001) Structure and composition of drusen associated with glomerulonephritis: implications for the role of complement activation in drusen biogenesis. Eye (London, England) 15: 390–395Google Scholar
  86. [86]
    Mullins RF, Johnson LV, Anderson DH, Hageman GS (1997) Characterization of drusen-associated glycoconjugates. Ophthalmology 104: 288–294PubMedGoogle Scholar
  87. [87]
    Mullins RF, Russell SR, Anderson DH, Hageman GS (2000) Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. Faseb J 14: 835–846PubMedGoogle Scholar
  88. [88]
    Nakaizumi Y, Hogan MJ, Feeney L (1964) The Ultrastructure of Bruch’s Membrane. 3. the Macular Area of the Human Eye. Archives of ophthalmology 72: 395–400PubMedGoogle Scholar
  89. [89]
    Neuner B, Wellmann J, Dasch B, Behrens T, Claes B, Dietzel M, Pauleikhoff D, Hense HW (2007) Modeling smoking history: a comparison of different approaches in the MARS study on agerelated maculopathy. Annals of epidemiology 17: 615–621PubMedGoogle Scholar
  90. [90]
    Okubo A, Rosa RH, Jr, Bunce CV, Alexander RA, Fan JT, Bird AC, Luthert PJ (1999) The relationships of age changes in retinal pigment epithelium and Bruch’s membrane. Investigative ophthalmology & visual science 40: 443–449Google Scholar
  91. [91]
    Pauleikhoff D, Chen J, Bird AC, Wessing A (1992a) [The Bruch membrane and choroid Angiography and functional characteristics in age-related changes]. Ophthalmologe 89: 39–44Google Scholar
  92. [92]
    Pauleikhoff D, Harper CA, Marshall J, Bird AC (1990) Aging changes in Bruch’s membrane A histochemical and morphologic study. Ophthalmology 97: 171–178PubMedGoogle Scholar
  93. [93]
    Pauleikhoff D, Koch JM (1995) Prevalence of age-related macular degeneration. Current opinion in ophthalmology 6: 51–56PubMedGoogle Scholar
  94. [94]
    Pauleikhoff D, Loffert D, Spital G, Radermacher M, Dohrmann J, Lommatzsch A, Bird AC (2002) Pigment epithelial detachment in the elderly. Clinical differentiation, natural course and pathogenetic implications. Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie 240: 533–538PubMedGoogle Scholar
  95. [95]
    Pauleikhoff D, Sheraidah G, Marshall J, Bird AC, Wessing A (1994) [Biochemical and histochemical analysis of age related lipid deposits in Bruch’s membrane]. Ophthalmologe 91: 730–734PubMedGoogle Scholar
  96. [96]
    Pauleikhoff D, Wojteki S, Muller D, Bornfeld N, Heiligenhaus A (2000) [Adhesive properties of basal membranes of Bruch’s membrane. Immunohistochemical studies of age-dependent changes in adhesive molecules and lipid deposits]. Ophthalmologe 97: 243–250PubMedGoogle Scholar
  97. [97]
    Pauleikhoff D, Zuels S, Sheraidah GS, Marshall J, Wessing A, Bird AC (1992b) Correlation between biochemical composition and fluorescein binding of deposits in Bruch’s membrane. Ophthalmology 99: 1548–1553Google Scholar
  98. [98]
    Penfold PL, Killingsworth MC, Sarks SH (1985) Senile macular degeneration: the involvement of immunocompetent cells. Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie 223: 69–76PubMedGoogle Scholar
  99. [99]
    Penfold PL, Liew SC, Madigan MC, Provis JM (1997) Modulation of major histocompatibility complex class II expression in retinas with age-related macular degeneration. Investigative ophthalmology & visual science 38: 2125–2133Google Scholar
  100. [100]
    Penfold PL, Madigan MC, Gillies MC, Provis JM (2001) Immunological and aetiological aspects of macular degeneration. Progress in retinal and eye research 20: 385–414PubMedGoogle Scholar
  101. [101]
    Ramrattan RS, Van Der Schaft TL, Mooy CM, de Bruijn WC, Mulder PG, de Jong PT (1994) Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging. Investigative ophthalmology & visual science 35: 2857–2864Google Scholar
  102. [102]
    Rittie L, Berton A, Monboisse JC, Hornebeck W, Gillery P (1999) Decreased contraction of glycated collagen lattices coincides with impaired matrix metalloproteinase production. Biochemical and biophysical research communications 264: 488–492PubMedGoogle Scholar
  103. [103]
    Rizzolo LJ (1991) Basement membrane stimulates the polarized distribution of integrins but not the Na,K-ATPase in the retinal pigment epithelium. Cell regulation 2: 939–949PubMedGoogle Scholar
  104. [104]
    Sarks JP, Sarks SH, Killingsworth MC (1988) Evolution of geographic atrophy of the retinal pigment epithelium. Eye (London, England) 2 (Pt 5): 552–577Google Scholar
  105. [105]
    Sarks SH (1976) Ageing and degeneration in the macular region: a clinico-pathological study. The British journal of ophthalmology 60: 324–341PubMedGoogle Scholar
  106. [106]
    Sarks SH, Van Driel D, Maxwell L, Killingsworth M (1980) Softening of drusen and subretinal neovascularization. Transactions of the ophthalmological societies of the United Kingdom 100: 414–422PubMedGoogle Scholar
  107. [107]
    Sheraidah G, Steinmetz R, Maguire J, Pauleikhoff D, Marshall J, Bird AC (1993) Correlation between lipids extracted from Bruch’s membrane and age. Ophthalmology 100: 47–51PubMedGoogle Scholar
  108. [108]
    Soubrane G, Coscas G, Francais C, Koenig F (1990) Occult subretinal new vessels in age-related macular degeneration. Natural History and early laser treatment. Ophthalmology 97: 649–657PubMedGoogle Scholar
  109. [109]
    Spaide RF, Ho-Spaide WC, Browne RW, Armstrong D (1999) Characterization of peroxidized lipids in Bruch’s membrane. Retina (Philadelphia, Pa) 19: 141–147Google Scholar
  110. [110]
    Spraul CW, Lang GE, Grossniklaus HE, Lang GK (1998) [Characteristics of drusen and changes in Bruch’s membrane in eyes with age-related macular degeneration. Histological study]. Ophthalmologe 95: 73–79PubMedGoogle Scholar
  111. [111]
    Starita C, Hussain AA, Marshall J (1995) Decreasing hydraulic conductivity of Bruch’s membrane: relevance to photoreceptor survival and lipofuscinoses. American journal of medical genetics 57: 235–237PubMedGoogle Scholar
  112. [112]
    Starita C, Hussain AA, Pagliarini S, Marshall J (1996) Hydrodynamics of ageing Bruch’s membrane: implications for macular disease. Experimental eye research 62: 565–572PubMedGoogle Scholar
  113. [113]
    Starita C, Hussain AA, Patmore A, Marshall J (1997) Localization of the site of major resistance to fluid transport in Bruch’s membrane. Investigative ophthalmology & visual science 38: 762–767Google Scholar
  114. [114]
    Strauss O (2005) The retinal pigment epithelium in visual function. Physiological reviews 85: 845–881PubMedGoogle Scholar
  115. [115]
    Strauss O (2009) [The role of retinal pigment epithelium in visual functions]. Ophthalmologe 106: 299–304PubMedGoogle Scholar
  116. [116]
    Tian SF, Toda S, Higashino H, Matsumura S (1996) Glycation decreases the stability of the triple-helical strands of fibrous collagen against proteolytic degradation by pepsin in a specific temperature range. Journal of biochemistry 120: 1153–1162PubMedGoogle Scholar
  117. [117]
    Tsuboi S (1987) Measurement of the volume flow and hydraulic conductivity across the isolated dog retinal pigment epithelium. Investigative ophthalmology & visual science 28: 1776–1782Google Scholar
  118. [118]
    Van Der Schaft TL, de Bruijn WC, Mooy CM, Ketelaars DA, de Jong PT (1991) Is basal laminar deposit unique for age-related macular degeneration? Archives of ophthalmology 109: 420–425PubMedGoogle Scholar
  119. [119]
    Van Der Schaft TL, Mooy CM, de Bruijn WC, Bosman FT, de Jong PT (1994) Immunohistochemical light and electron microscopy of basal laminar deposit. Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie 232: 40–46PubMedGoogle Scholar
  120. [120]
    Vater CA, Harris ED, Jr, Siegel RC (1979) Native cross-links in collagen fibrils induce resistance to human synovial collagenase. The Biochemical journal 181: 639–645PubMedGoogle Scholar
  121. [121]
    Wang L, Li CM, Rudolf M, Belyaeva OV, Chung BH, Messinger JD, Kedishvili NY, Curcio CA (2009) Lipoprotein particles of intraocular origin in human Bruch membrane: an unusual lipid profile. Investigative ophthalmology & visual science 50: 870–877Google Scholar
  122. [122]
    Wasmuth S, Lueck K, Baehler H, Lommatzsch A, Pauleikhoff D (2009) Increased vitronectin production by complementstimulated human retinal pigment epithelial cells. Investigative ophthalmology & visual science 50: 5304–5309Google Scholar
  123. [123]
    Wimmers S, Karl MO, Strauss O (2007) Ion channels in the RPE. Progress in retinal and eye research 26: 263–301PubMedGoogle Scholar
  124. [124]
    Young RW (1987) Pathophysiology of age-related macular degeneration. Survey of ophthalmology 31: 291–306PubMedGoogle Scholar
  125. [125]
    Zacks DN, Zheng QD, Han Y, Bakhru R, Miller JW (2004) FAS-mediated apoptosis and its relation to intrinsic pathway activation in an experimental model of retinal detachment. Investigative ophthalmology & visual science 45: 4563–4569Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Albrecht Lommatzsch
    • 1
  • Susanne Wasmuth
    • 1
  • Daniel Pauleikhoff
    • 1
  • F. G. Holz
    • 2
  • A. C. Bird
    • 3
  1. 1.AugenabteilungSt. Franziskus HospitalMünster
  2. 2.Klinik für AugenheilkundeUniversitätsklinikum BonnBonn
  3. 3.Institute of OphthalmologyMoorfields Eye HospitalLondonGroßbritannien

Personalised recommendations