Advertisement

Alterung der Netzhaut und des retinalen Pigmentepithels

  • M. E. Boulton

Zusammenfassung

Altern wurde definiert als »eine mit der Zeit stetig zunehmende Reihe von Veränderungen, die im fortgeschrittenen Alter mit immer höherer Krankheitsanfälligkeit und Tod einhergehen bzw. für sie verantwortlich sind« [1]. Auch das Auge macht dabei keine Ausnahme; Katarakt und Netzhautdegeneration sind häufige Begleiterscheinungen des Alterns [2]. Vor allem die Retina ist empfindlich für Altersveränderungen, da

  • die Mehrheit der Zelltypen nicht teilungsfähig sind, so dass sich Schäden kumulieren,

  • Photorezeptorzellen und die Zellen des retinalen Pigmentepithels metabolisch hoch aktiv sind,

  • die Retina eine hohe Sauerstoffversorgung aufweist, was in Kombination mit Lichtexposition im kurzwelligen Bereich zu oxidativen Schäden führt und

  • eine Akkumulation toxischer Stoffe wie Lipofuszin erfolgt, die die Sensibilität gegenüber Licht erhöhen [3–5].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Harman D (1981) The aging process. Proc Natl Acad Sci U S A 78(11): 7124–8PubMedGoogle Scholar
  2. [2]
    Margrain TH, Boulton ME (2005) Sensory impairment. In: Johnson M (ed) The Cambridge Handbook of Age and Aging. University Press, Cambridge, p 121–130Google Scholar
  3. [3]
    Boulton M (1991) Ageing of the retinal pigment epithelium. In: Osborne N, Chader G (eds) Progress in Retinal Research. Pergamon Press, Oxford, p 125–151Google Scholar
  4. [4]
    Zarbin MA (2004) Current concepts in the pathogenesis of agerelated macular degeneration. Arch Ophthalmol 122(4): 598–614PubMedGoogle Scholar
  5. [5]
    de Jong PT (2006) Age-related macular degeneration. N Engl J Med 355(14): 1474–85PubMedGoogle Scholar
  6. [6]
    Bengtson VL, Putney NM, Johnson ML (2005) In: Johnson M (ed) The Cambridge Handbook of Age and Aging. University Press, Cambridge, p 3–20Google Scholar
  7. [7]
    Carnes BA, Staats DO, Sonntag WE (2008) Does senescence give rise to disease? Mech Ageing Dev 129(12): 693–9PubMedGoogle Scholar
  8. [8]
    Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11(3): 298–300PubMedGoogle Scholar
  9. [9]
    Boulton ME (2008) Aging of the retinal pigment epithelium. In: Tombran-Tink J, Barnstable CJC (eds) Visual Transduction and Non-Visual Light Perception. Humana Press, p 403–420Google Scholar
  10. [10]
    Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20(4): 145–7PubMedGoogle Scholar
  11. [11]
    Miquel J, et al. (1980) Mitochondrial role in cell aging. Exp Gerontol 15(6): 575–91PubMedGoogle Scholar
  12. [12]
    Jarrett SG, et al. (2008) Mitochondrial DNA damage and its potential role in retinal degeneration. Prog Retin Eye Res 27(6): 596–607PubMedGoogle Scholar
  13. [13]
    Wang AL, et al. (2008) Increased mitochondrial DNA damage and down-regulation of DNA repair enzymes in aged rodent retinal pigment epithelium and choroid. Mol Vis 14: 644–51PubMedGoogle Scholar
  14. [14]
    Nordgaard CL, et al. (2008) Mitochondrial proteomics of the retinal pigment epithelium at progressive stages of age-related macular degeneration. Invest Ophthalmol Vis Sci 49(7): 2848–55PubMedGoogle Scholar
  15. [15]
    Kenney MC, et al. (2010) Characterization of Retinal and Blood Mitochondrial DNA from Age-related Macular Degeneration Patients. Invest Ophthalmol Vis Sci [epub ahead of print]Google Scholar
  16. [16]
    Kanski J (2003) Clinical Ophthalmology: A Systematic Approach. Heinemann, ButterworthGoogle Scholar
  17. [17]
    Salvi SM, Akhtar S, Currie Z (2006) Ageing changes in the eye. Postgrad Med J 82(971): 581–7PubMedGoogle Scholar
  18. [18]
    Guirao A, et al. (1999) Average optical performance of the human eye as a function of age in a normal population. Invest Ophthalmol Vis Sci 40(1): 203–13PubMedGoogle Scholar
  19. [19]
    Langrova H, et al. (2008) Age-related changes in retinal functional topography. Invest Ophthalmol Vis Sci 49(11): 5024–32PubMedGoogle Scholar
  20. [20]
    Mohidin N, Yap MK, Jacobs RJ (1999) Influence of age on the multifocal electroretinography. Ophthalmic Physiol Opt 19(6): 481–8PubMedGoogle Scholar
  21. [21]
    Tzekov RT, Gerth C, Werner JS (2004) Senescence of human multifocal electroretinogram components: a localized approach. Graefes Arch Clin Exp Ophthalmol 242(7): 549–60PubMedGoogle Scholar
  22. [22]
    Bonnel S, Mohand-Said S, Sahel JA (2003) The aging of the retina. Exp Gerontol 38(8): 825–31PubMedGoogle Scholar
  23. [23]
    Birch DG, Anderson JL (1992), Standardized full-field electroretinography. Normal values and their variation with age. Arch Ophthalmol 110(11): 1571–6PubMedGoogle Scholar
  24. [24]
    Jackson GR, Owsley C (2000) Scotopic sensitivity during adulthood. Vision Res 40(18): 2467–73PubMedGoogle Scholar
  25. [25]
    Owsley C, et al. (2000) Psychophysical evidence for rod vulnerability in age-related macular degeneration. Invest Ophthalmol Vis Sci 41(1): 267–73PubMedGoogle Scholar
  26. [26]
    Danias J, et al. (2003) Quantitative analysis of retinal ganglion cell (RGC) loss in aging DBA/2NNia glaucomatous mice: comparison with RGC loss in aging C57/BL6 mice. Invest Ophthalmol Vis Sci 44(12): 5151–62PubMedGoogle Scholar
  27. [27]
    Neufeld AH, et al. (2002) Loss of retinal ganglion cells following retinal ischemia: the role of inducible nitric oxide synthase. Exp Eye Res 75(5): 521–8PubMedGoogle Scholar
  28. [28]
    Eliasieh K, Liets LC, Chalupa LM (2007) Cellular reorganization in the human retina during normal aging. Invest Ophthalmol Vis Sci 48(6): 2824–30PubMedGoogle Scholar
  29. [29]
    Alamouti B, Funk J (2003) Retinal thickness decreases with age: an OCT study. Br J Ophthalmol 87(7): 899–901PubMedGoogle Scholar
  30. [30]
    Eriksson U, Alm A (2009) Macular thickness decreases with age in normal eyes: a study on the macular thickness map protocol in the Stratus OCT. Br J Ophthalmol 93(11): 1448–52PubMedGoogle Scholar
  31. [31]
    Cavallotti C, et al. (2004) Age-related changes in the human retina. Can J Ophthalmol 39(1): 61–8PubMedGoogle Scholar
  32. [32]
    Feuer WJ, et al. (2010) Topographic Differences in the Agerelated Changes in the Retinal Nerve Fiber Layer of Normal Eyes Measured by Stratus Optical Coherence Tomography. J Glaucoma [epub ahead of print]Google Scholar
  33. [33]
    Gao H, Hollyfield JG (1992) Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 33(1): 1–17PubMedGoogle Scholar
  34. [34]
    Curcio CA, et al. (1993) Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina. Invest Ophthalmol Vis Sci 34(12): 3278–96PubMedGoogle Scholar
  35. [35]
    Leveillard T, et al. (2004) Identification and characterization of rod-derived cone viability factor. Nat Genet 36(7): 755–9PubMedGoogle Scholar
  36. [36]
    Chalmel F, et al. (2007) Rod-derived Cone Viability Factor-2 is a novel bifunctional-thioredoxin-like protein with therapeutic potential. BMC Mol Biol 8: 74PubMedGoogle Scholar
  37. [37]
    Fridlich R, et al. (2009) The thioredoxin-like protein rod-derived cone viability factor (RdCVFL) interacts with TAU and inhibits its phosphorylation in the retina. Mol Cell Proteomics 8(6): 1206–18PubMedGoogle Scholar
  38. [38]
    Aggarwal P, Nag TC, Wadhwa S (2007) Age-related decrease in rod bipolar cell density of the human retina: an immunohistochemical study. J Biosci 32(2): 293–8PubMedGoogle Scholar
  39. [39]
    Liets LC, et al. (2006) Dendrites of rod bipolar cells sprout in normal aging retina. Proc Natl Acad Sci U S A 103(32): 12156–60PubMedGoogle Scholar
  40. [40]
    Terzibasi E, et al. (2009) Age-dependent remodelling of retinal circuitry. Neurobiol Aging 30(5): 819–28PubMedGoogle Scholar
  41. [41]
    Chen M, et al. (2010) Immune activation in Retinal Aging: A Gene Expression Study. Invest Ophthalmol Vis Sci [epub ahead of print]Google Scholar
  42. [42]
    Chan-Ling T, et al. (2007) Inflammation and breakdown of the blood-retinal barrier during »physiological aging« in the rat retina: a model for CNS aging. Microcirculation 14(1): 63–76PubMedGoogle Scholar
  43. [43]
    Xu H, Chen M, Forrester JV (2009) Para-inflammation in the aging retina. Prog Retin Eye Res 28(5): 348–68PubMedGoogle Scholar
  44. [44]
    Marmor F, Wolfensberger TJ (1998) The Retinal Pigment Epithelium. Oxford University Press, New York OxfordGoogle Scholar
  45. [45]
    Hogan MJ, Alvarado JA, Weddell JE (1971) Histology of the Human Eye. Saunders, PhiladelphiaGoogle Scholar
  46. [46]
    Boulton M, Dayhaw-Barker P (2001) The role of the retinal pigment epithelium: topographical variation and ageing changes. Eye 15(Pt 3): 384–9PubMedGoogle Scholar
  47. [47]
    Gouras P, et al. (2010) Topographic and age-related changes of the retinal epithelium and Bruch‘s membrane of rhesus monkeys. Graefes Arch Clin Exp Ophthalmol 248(7): 973–84PubMedGoogle Scholar
  48. [48]
    Streeten BW (1969) Development of the human retinal pigment epithelium and the posterior segment. Arch Ophthalmol 81(3): 383–94PubMedGoogle Scholar
  49. [49]
    Marshall J (1987) The ageing retina: physiology or pathology? Eye 1: 282–295PubMedGoogle Scholar
  50. [50]
    Burke JM, BS McKay, GJ (1991) Jaffe Retinal pigment epithelial cells of the posterior pole have fewer Na/K adenosine triphosphatase pumps than peripheral cells. Invest Ophthalmol Vis Sci 32(7): 2042–6PubMedGoogle Scholar
  51. [51]
    Burke JM, Twining SS (1988) Regional comparisons of cathepsin D activity in bovine retinal pigment epithelium. Invest Ophthalmol Vis Sci 29(12): 1789–93PubMedGoogle Scholar
  52. [52]
    Cabral L, et al. (1990) Regional distribution of lysosomal enzymes in the canine retinal pigment epithelium. Invest Ophthalmol Vis Sci 31(4): 670–6PubMedGoogle Scholar
  53. [53]
    Panda-Jonas S, Jonas JB, Jakobczyk-Zmija M (1996) Retinal pigment epithelial cell count, distribution, correlations in normal human eyes. Am J Ophthalmol 121(2): 181–9PubMedGoogle Scholar
  54. [54]
    Del Priore LV, Kuo YH, Tezel TH (2002) Age-related changes in human RPE cell density and apoptosis proportion in situ. Invest Ophthalmol Vis Sci 43(10): 3312–8PubMedGoogle Scholar
  55. [55]
    Dorey CK, et al. (1989) Cell loss in the aging retina. Relationship to lipofuscin accumulation and macular degeneration. Invest Ophthalmol Vis Sci 30(8): 1691–9PubMedGoogle Scholar
  56. [56]
    Feeney-Burns L, Hilderbrand ES, Eldridge S (1984) Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells. Invest Ophthalmol Vis Sci 25(2): 195–200PubMedGoogle Scholar
  57. [57]
    Burke JM Hjelmeland LM (2005) Mosaicism of the retinal pigment epithelium: seeing the small picture. Mol Interv 5(4): 241–9PubMedGoogle Scholar
  58. [58]
    Boulton M, et al. (2004) The photoreactivity of ocular lipofuscin. Photochem Photobiol Sci 3(8): 759–64PubMedGoogle Scholar
  59. [59]
    Boulton ME (2009) Lipofuscin of the retinal pigment epithelium, in Fundus Autofluorescence, N. Lois and J.V. Forrester, Editors. Wolters Kluwer/Lipincott Williams & Wilkins, Philadelphia, p 14–26Google Scholar
  60. [60]
    Rozanowska M, Rozanowski B (2008) Visual transduction and age-related changes in lipofuscin. In: Tombran-Tink J, Barnstable CJ (eds) Visual Transduction and Non-Visual Light Perception. Humana Press, p 421–462Google Scholar
  61. [61]
    Ng KP, et al. (2008) Retinal pigment epithelium lipofuscin proteomics. Mol Cell Proteomics 7(7): 1397–405PubMedGoogle Scholar
  62. [62]
    Sparrow JR Boulton M (2005) RPE lipofuscin and its role in retinal pathobiology. Exp Eye Res 80(5): 595–606PubMedGoogle Scholar
  63. [63]
    Crouch RK, et al. (2010) Human A2E levels are higher in the peripheral (extramacular) RPE than in the macular region of the RPE IOVS. ARVO-E abstract 1300Google Scholar
  64. [64]
    Boulton M, et al. (1990) Age-related changes in the morphology, absorption and fluorescence of melanosomes and lipofuscin granules of the retinal pigment epithelium. Vision Res 30(9): 1291–303PubMedGoogle Scholar
  65. [65]
    Clancy KMR, et al. (2000) Atomic force microscopy and near-field scanning optical microscopy measurements of single human retinal lipofuscin granules. J Phys Chem B 104: 12098–12101Google Scholar
  66. [66]
    Haralampus-Grynaviski NM, et al. (2001) Probing the spatial dependence of the emission spectrum of single human retinal lipofuscin granules using near-field scanning optical microscopy. Photochem Photobiol 74(2): 364–8PubMedGoogle Scholar
  67. [67]
    Rozanowska M, et al. (1995) Blue light-induced reactivity of retinal age pigment. In vitro generation of oxygen-reactive species. J Biol Chem 270(32): 18825–30PubMedGoogle Scholar
  68. [68]
    Rozanowska M, et al. (1998) Blue light-induced singlet oxygen generation by retinal lipofuscin in non-polar media. Free Radic Biol Med 24(7–8): 1107–12PubMedGoogle Scholar
  69. [69]
    Gaillard ER, et al. (1995) Photophysical studies on human retinal lipofuscin. Photochem Photobiol 61(5): 448–53PubMedGoogle Scholar
  70. [70]
    Rozanowska M, et al. (2004) Age-related changes in the photoreactivity of retinal lipofuscin granules: role of chloroforminsoluble components. Invest Ophthalmol Vis Sci 45(4): 1052–60PubMedGoogle Scholar
  71. [71]
    Davies S, et al. (2001) Photocytotoxicity of lipofuscin in human retinal pigment epithelial cells. Free Radic Biol Med 31(2): 256–65PubMedGoogle Scholar
  72. [72]
    Shamsi FA, Boulton M (2001) Inhibition of RPE lysosomal and antioxidant activity by the age pigment lipofuscin. Invest Ophthalmol Vis Sci 42(12): 3041–6PubMedGoogle Scholar
  73. [73]
    Godley BF, et al. (2005) Blue light induces mitochondrial DNA damage and free radical production in epithelial cells. J Biol Chem 280(22): 21061–6PubMedGoogle Scholar
  74. [74]
    Schutt F, et al. (2000) Photodamage to human RPE cells by A2-E, a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci 41(8): 2303–8PubMedGoogle Scholar
  75. [75]
    Sparrow JR Cai B (2001) Blue light-induced apoptosis of A2Econtaining RPE: involvement of caspase-3 and protection by Bcl-2. Invest Ophthalmol Vis Sci 42(6): 1356–62PubMedGoogle Scholar
  76. [76]
    Sparrow JR, Nakanishi K, Parish CA (2000) The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. Invest Ophthalmol Vis Sci 41(7): 1981–9PubMedGoogle Scholar
  77. [77]
    Pawlak A, et al. (2003) Comparison of the aerobic photoreactivity of A2E with its precursor retinal. Photochem Photobiol 77(3): 253–8PubMedGoogle Scholar
  78. [78]
    Rozanowska M, Sarna T (2005) Light-induced damage to the retina: role of rhodopsin chromophore revisited. Photochem Photobiol 81(6): 1305–30PubMedGoogle Scholar
  79. [79]
    Ben-Shabat S, et al. (2002) Formation of a nonaoxirane from A2E, a lipofuscin fluorophore related to macular degeneration, evidence of singlet oxygen involvement. Angew Chem Int Ed Engl 41(5): 814–7PubMedGoogle Scholar
  80. [80]
    Zhou J, et al. (2006) Complement activation by photooxidation products of A2E, a lipofuscin constituent of the retinal pigment epithelium. Proc Natl Acad Sci U S A 103(44): 16182–7PubMedGoogle Scholar
  81. [81]
    Bergmann M, et al. (2004) Inhibition of the ATP-driven proton pump in RPE lysosomes by the major lipofuscin fluorophore A2-E may contribute to the pathogenesis of agerelated macular degeneration. FASEB J 18(3): 562–4PubMedGoogle Scholar
  82. [82]
    Holz FG, et al. (1999) Inhibition of lysosomal degradative functions in RPE cells by a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci 40(3): 737–43PubMedGoogle Scholar
  83. [83]
    Liu J, et al. (2008) Restoration of lysosomal pH in RPE cells from cultured human and ABCA4(-/-) mice: pharmacologic approaches and functional recovery. Invest Ophthalmol Vis Sci 49(2): 772–80PubMedGoogle Scholar
  84. [84]
    Vives-Bauza C, et al. (2008) The age lipid A2E and mitochondrial dysfunction synergistically impair phagocytosis by retinal pigment epithelial cells. J Biol Chem 283(36): 24770–80PubMedGoogle Scholar
  85. [85]
    Finnemann SC, Leung LW, Rodriguez-Boulan E (2002) The lipofuscin component A2E selectively inhibits phagolysosomal degradation of photoreceptor phospholipid by the retinal pigment epithelium. Proc Natl Acad Sci U S A 99(6): 3842–7PubMedGoogle Scholar
  86. [86]
    Drenos F, Kirkwood TB (2005) Modelling the disposable soma theory of ageing. Mech Ageing Dev 126(1): 99–103PubMedGoogle Scholar
  87. [87]
    Boulton ME (1998) The role of melanin in the RPE. In: Marmor M, Wolfensberger T (eds) The Retinal Pigment Epithelium. University Press, Oxford p 68–85Google Scholar
  88. [88]
    Weiter JJ, et al. (1986) Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes. Invest Ophthalmol Vis Sci 27(2): 145–52PubMedGoogle Scholar
  89. [89]
    Kayatz P, et al. (2001) Oxidation causes melanin fluorescence. Invest Ophthalmol Vis Sci 42(1): 241–6PubMedGoogle Scholar
  90. [90]
    Sarna T, et al. (2003) Loss of melanin from human RPE with aging: possible role of melanin photooxidation. Exp Eye Res 76(1): 89–98PubMedGoogle Scholar
  91. [91]
    Sarna T (1992) Properties and function of the ocular melanin – a photophysical view. J Photochem Photobiol B Biol 12: 215–258Google Scholar
  92. [92]
    Zareba M, et al. (2006) Oxidative stress in ARPE-19 cultures: do melanosomes confer cytoprotection? Free Radic Biol Med 40(1): 87–100PubMedGoogle Scholar
  93. [93]
    Rozanowski B, et al. (2008) The phototoxicity of aged human retinal melanosomes. Photochem Photobiol 84(3): 650–7PubMedGoogle Scholar
  94. [94]
    Feeney L (1978) Lipofuscin and melanin of human retinal pigment epithelium. Fluorescence, enzyme cytochemical, and ultrastructural studies. Invest Ophthalmol Vis Sci 17(7): 583–600PubMedGoogle Scholar
  95. [95]
    Feher J, et al. (2006) Mitochondrial alterations of retinal pigment epithelium in age-related macular degeneration. Neurobiol Aging 27(7): 983–93PubMedGoogle Scholar
  96. [96]
    Reeve AK, Krishnan KJ, Turnbull D (2008) Mitochondrial DNA mutations in disease, aging, and neurodegeneration. Ann N Y Acad Sci 1147: 21–9PubMedGoogle Scholar
  97. [97]
    Jarrett S, AS Lewin, Boulton ME (2010) The importance of mitochondria in age-related and inherited eye disorders. Ophthalmic Res 44: 179–190PubMedGoogle Scholar
  98. [98]
    Karunadharma PP, et al. (2010) Mitochondrial DNA Damage as a Potential Mechanism for Age-related Macular Degeneration. Invest Ophthalmol Vis Sci [epub ahead of print]Google Scholar
  99. [99]
    Udar N, et al. (2009) Mitochondrial DNA haplogroups associated with age-related macular degeneration. Invest Ophthalmol Vis Sci 50(6): 2966–74PubMedGoogle Scholar
  100. [100]
    Barreau E, et al. (1996) Accumulation of mitochondrial DNA deletions in human retina during aging. Invest Ophthalmol Vis Sci 37(2): 384–91PubMedGoogle Scholar
  101. [101]
    Nordgaard CL, et al. (2006) Proteomics of the retinal pigment epithelium reveals altered protein expression at progressive stages of age-related macular degeneration. Invest Ophthalmol Vis Sci 47(3): 815–22PubMedGoogle Scholar
  102. [102]
    Nordgaard CL., et al. (2008) Mitochondrial proteomics of the retinal pigment epithelium at progressive stages of age-related macular degeneration. Invest Ophthalmol Vis Sci 49(7): 2848–2855PubMedGoogle Scholar
  103. [103]
    Decanini A, et al. (207) Changes in select redox proteins of the retinal pigment epithelium in age-related macular degeneration. Am J Ophthalmol 143(4): 607–15Google Scholar
  104. [104]
    Godley BF, et al. (2008) Mitochondrial DNA repair capacity decreases with progression of age-related macular degeneration. Invest Ophthalmol Vis Sci 49: ARVO E-abstractGoogle Scholar
  105. [105]
    Justilien V, et al. (2007) SOD2 knockdown mouse model of early AMD. Invest Ophthalmol Vis Sci 48(10): 4407–20PubMedGoogle Scholar
  106. [106]
    Imamura Y, et al. (2006) Drusen, choroidal neovascularization, and retinal pigment epithelium dysfunction in SOD1-deficient mice: a model of age-related macular degeneration. Proc Natl Acad Sci U S A 103(30): 11282–7PubMedGoogle Scholar
  107. [107]
    Jarrett SG, Boulton ME (2005) Antioxidant up-regulation and increased nuclear DNA protection play key roles in adaptation to oxidative stress in epithelial cells. Free Radic Biol Med 38(10): 1382–91PubMedGoogle Scholar
  108. [108]
    Ballinger SW, et al. (1999) Hydrogen peroxide causes significant mitochondrial DNA damage in human RPE cells. Exp Eye Res 68(6): 765–72PubMedGoogle Scholar
  109. [109]
    Jarrett SG, Boulton ME (2007) Poly(ADP-ribose) polymerase offers protection against oxidative and alkylation damage to the nuclear and mitochondrial genomes of the retinal pigment epithelium. Ophthalmic Res 39(4): 213–23PubMedGoogle Scholar
  110. [110]
    Schutt F, et al. (2007) Accumulation of A2-E in mitochondrial membranes of cultured RPE cells. Graefes Arch Clin Exp Ophthalmol 245(3): 391–8PubMedGoogle Scholar
  111. [111]
    Hayasaka S (1989) Aging changes in lipofuscin, lysosomes and melanin in the macular area of human retina and choroid. Jpn J Ophthalmol 33(1): 36–42PubMedGoogle Scholar
  112. [112]
    Boulton M, et al. (1994) Regional variation and age-related changes of lysosomal enzymes in the human retinal pigment epithelium. Br J Ophthalmol 78(2): 125–9PubMedGoogle Scholar
  113. [113]
    Ogawa T, et al. (2005) Changes in the spatial expression of genes with aging in the mouse RPE/choroid. Mol Vis 11: 380–6PubMedGoogle Scholar
  114. [114]
    Mizushima N, et al. (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182): 1069–75PubMedGoogle Scholar
  115. [115]
    Cuervo AM, et al. (2005) Autophagy and aging: the importance of maintaining »clean« cells. Autophagy 1(3): 131–40PubMedGoogle Scholar
  116. [116]
    Cuervo AM (2004) Autophagy: many paths to the same end. Mol Cell Biochem 263(1–2): 55–72PubMedGoogle Scholar
  117. [117]
    Klionsky D, et al. (2007) How shall I eat thee? Autophagy 3(5): 413–6PubMedGoogle Scholar
  118. [118]
    Sohal RS (1981) Age Pigments. Elsevier/North-Holland Biomedical PressGoogle Scholar
  119. [119]
    Terman A, Gustafsson B, Brunk UT (2007) Autophagy, organelles and ageing. J Pathol 211(2): 134–43PubMedGoogle Scholar
  120. [120]
    Boulton M, et al. (1989) The formation of autofluorescent granules in cultured human RPE. Invest Ophthalmol Vis Sci 30(1): 82–9PubMedGoogle Scholar
  121. [121]
    Wassell J, et al. (1998) Fluorescence properties of autofluorescent granules generated by cultured human RPE cells. Invest Ophthalmol Vis Sci 39(8): 1487–92PubMedGoogle Scholar
  122. [122]
    Nilsson SE, et al. (2003) Aging of cultured retinal pigment epithelial cells: oxidative reactions, lipofuscin formation and blue light damage. Doc Ophthalmol 106(1): 13–6PubMedGoogle Scholar
  123. [123]
    Burke JM, Skumatz CM (1998) Autofluorescent inclusions in long-term postconfluent cultures of retinal pigment epithelium. Invest Ophthalmol Vis Sci 39(8): 1478–86PubMedGoogle Scholar
  124. [124]
    Krohne TU, et al. (2010) Effects of lipid peroxidation products on lipofuscinogenesis and autophagy in human retinal pigment epithelial cells. Exp Eye Res 90(3): 465–71PubMedGoogle Scholar
  125. [125]
    Haralampus-Grynaviski NM, et al. (2003) Spectroscopic and morphological studies of human retinal lipofuscin granules. Proc Natl Acad Sci U S A 100(6): 3179–84PubMedGoogle Scholar
  126. [126]
    Kiffin R, Bandyopadhyay U, Cuervo AM (2006) Oxidative stress and autophagy. Antioxid Redox Signal 8(1–2): 152–62PubMedGoogle Scholar
  127. [127]
    Kurz T, Terman A, Brunk UT (2007) Autophagy, ageing and apoptosis: the role of oxidative stress and lysosomal iron. Arch Biochem Biophys 462(2): 220–30PubMedGoogle Scholar
  128. [128]
    Wang AL, et al. (2009) Autophagy and exosomes in the aged retinal pigment epithelium: possible relevance to drusen formation and age-related macular degeneration. PLoS One 4(1): e4160PubMedGoogle Scholar
  129. [129]
    Winkler BS, et al. (1999) Oxidative damage and age-related macular degeneration. Mol Vis 5: 32PubMedGoogle Scholar
  130. [130]
    Beatty S, et al. (2000) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 45(2): 115–34PubMedGoogle Scholar
  131. [131]
    Halliwell B, Gutteridge JM (2007) Free Radicals in Biology and Medicine. 3rd ed. Oxford University Press, New YorkGoogle Scholar
  132. [132]
    AREDS (2001) A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol 119(10): 1417–36Google Scholar
  133. [133]
    Barker FM, 2nd (2010) Dietary supplementation: effects on visual performance and occurrence of AMD and cataracts. Curr Med Res Opin 26(8): 2011–23PubMedGoogle Scholar
  134. [134]
    Liles MR, Newsome DA, Oliver PD (1991) Antioxidant enzymes in the aging human retinal pigment epithelium. Arch Ophthalmol 109(9): 1285–8PubMedGoogle Scholar
  135. [135]
    Miyamura N, et al. (2004) Topographic and age-dependent expression of heme oxygenase-1 and catalase in the human retinal pigment epithelium. Invest Ophthalmol Vis Sci 45(5): 1562–5PubMedGoogle Scholar
  136. [136]
    Friedrichson T, et al. (1995) Vitamin E in macular and peripheral tissues of the human eye. Curr Eye Res 14(8): 693–701PubMedGoogle Scholar
  137. [137]
    Castorina C, et al. (1992) Lipid peroxidation and antioxidant enzymatic systems in rat retina as a function of age. Neurochem Res 17(6): 599–604PubMedGoogle Scholar
  138. [138]
    Beatty S, et al. (2001) Macular pigment and risk for age-related macular degeneration in subjects from a Northern European population. Invest Ophthalmol Vis Sci 42(2): 439–46PubMedGoogle Scholar
  139. [139]
    Maeda A, Crabb JW, Palczewski K (2005) Microsomal glutathione S-transferase 1 in the retinal pigment epithelium: protection against oxidative stress and a potential role in aging. Biochemistry 44(2): 480–9PubMedGoogle Scholar
  140. [140]
    Liao JH, Lee JS, Chiou SH (2002) C-terminal lysine truncation increases thermostability and enhances chaperone-like function of porcine alphaB-crystallin. Biochem Biophys Res Commun 297(2): 309–16PubMedGoogle Scholar
  141. [141]
    Organisciak D, et al. (2006) Genetic, age and light mediated effects on crystallin protein expression in the retina. Photochem Photobiol 82(4): 1088–96PubMedGoogle Scholar
  142. [142]
    Jarrett SG, Albon J, Boulton M (2006) The contribution of DNA repair and antioxidants in determining cell type-specific resistance to oxidative stress. Free Radic Res, 40(11): 1155–65Google Scholar
  143. [143]
    Crawford DR, Davies KJ (1994) Adaptive response and oxidative stress. Environ Health Perspect 102 Suppl 10: 25–8PubMedGoogle Scholar
  144. [144]
    Booij JC, et al. (2010) The dynamic nature of Bruch’s membrane. Prog Retin Eye Res 29(1): 1–18PubMedGoogle Scholar
  145. [145]
    Curcio CA, et al. (2009) Aging, age-related macular degeneration, the response-to-retention of apolipoprotein B-containing lipoproteins. Prog Retin Eye Res 28(6): 393–422PubMedGoogle Scholar
  146. [146]
    Guymer R, Luthert P, Bird A (1999) Changes in Bruch’s membrane and related structures with age. Prog Retin Eye Res 18(1): 59–90PubMedGoogle Scholar
  147. [147]
    Hagema, GS, Mullins RF (1999) Molecular composition of drusen as related to substructural phenotype. Molecular Vision 5: 28Google Scholar
  148. [148]
    Anderson DH, Radeke MJ, Gallo NB et al. (2010) The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited. Prog Retin Eye Res 29(2):95–112PubMedGoogle Scholar
  149. [149]
    Bird AC (1991) Doyne Lecture. Pathogenesis of retinal pigment epithelial detachment in the elderly; the relevance of Bruch’s membrane change. Eye 5: 1–12PubMedGoogle Scholar
  150. [150]
    Chong NH, et al. (2005) Decreased thickness and integrity of the macular elastic layer of Bruch‘s membrane correspond to the distribution of lesions associated with age-related macular degeneration. Am J Pathol 166(1): 241–51PubMedGoogle Scholar
  151. [151]
    Ugarte M, Hussain AA, Marshall J (2006) An experimental study of the elastic properties of the human Bruch‘s membranechoroid complex: relevance to ageing. Br J Ophthalmol 90(5): 621–6PubMedGoogle Scholar
  152. [152]
    Handa JT, et al. (1999) Increase in the advanced glycation end product pentosidine in Bruch’s membrane with age. Invest Ophthalmol Vis Sci 40(3): 775–9PubMedGoogle Scholar
  153. [153]
    Hewitt AT, Nakazawa K, Newsome DA (1989) Analysis of newly synthesized Bruch‘s membrane proteoglycans. Invest Ophthalmol Vis Sci 30(3): 478–86PubMedGoogle Scholar
  154. [154]
    Marshall J, et al. (1998) Aging and Bruch’s membrane. In: Marmor MF, Wolfensberger TJ (eds) The Retinal Pigment Epithelium. Oxford University Press, New York Oxford, p 669–692Google Scholar
  155. [155]
    Friedman DS, et al. (2004) Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 122(4): 564–72PubMedGoogle Scholar
  156. [156]
    Martin JE, Sheaff MT (2007) The pathology of ageing: concepts and mechanisms. J Pathol 211(2): 111–3PubMedGoogle Scholar
  157. [157]
    Curcio CA, Medeiros NE, Millican CL (1996) Photoreceptor loss in age-related macular degeneration. Invest Ophthalmol Vis Sci 37(7): 1236–49PubMedGoogle Scholar
  158. [158]
    Solbach U, et al. (1997) Imaging of retinal autofluorescence in patients with age-related macular degeneration. Retina 17(5): 385–9PubMedGoogle Scholar
  159. [159]
    Ambati J, et al. (2003) An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice. Nat Med 9(11): 1390–7PubMedGoogle Scholar
  160. [160]
    Malek G, et al. (2005) Apolipoprotein E allele-dependent pathogenesis: a model for age-related retinal degeneration. Proc Natl Acad Sci U S A 102(33): 11900–5PubMedGoogle Scholar
  161. [161]
    Bird A, Marshall J (1986) Retinal pigment epithelial detachments in the elderly. Trans Ophthalmol Soc UK 105: 674–682PubMedGoogle Scholar
  162. [162]
    Archer D (1983) Retinal neovascularization. Trans Ophthalmol Soc UK 103: 2–26PubMedGoogle Scholar
  163. [163]
    Eagle RC, Jr. (1984) Mechanisms of maculopathy. Ophthalmology 91(6): 613–25PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • M. E. Boulton
    • 1
  1. 1.Institute for Anatomy and Cell BiologyUniversity of FloridaGainesvilleUSA

Personalised recommendations