Advertisement

Genetik

  • Ulrike Friedrich
  • L. G. Fritsche
  • B. H. F. Weber

Zusammenfassung

Erstmalig wurde die altersabhängige Makuladegeneration (AMD) im Jahre 1885 als ein eigenständiges klinisches Krankheitsbild mit altersabhängiger Pigmentverschiebung und atrophischen Veränderungen des zentralen Netzhautbereiches (Makula) beschrieben [28]. Heute gilt die AMD als eine der häufigsten Netzhauterkrankungen in den Industrienationen und als Hauptursache für gesetzlich anerkannte Blindheit [21]. In den letzten Jahrzehnten wurden große Anstrengungen unternommen, die zugrunde liegenden Pathomechanismen der AMD aufzuklären. Zahlreiche klinisch-pathologische und experimentelle Beobachtungen führten zu ersten Konzepten einer AMD-Pathogenese, die darauf abzielen, mögliche Prozesse ausgehend von einer normalen, alternden Netzhaut bis hin zu manifesten Stadien der Erkrankung zu erklären [80].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Allikmets R (2000) Further evidence for an association of ABCR alleles with age-related macular degeneration. The International ABCR Screening Consortium. Am J Hum Genet 67:487–491PubMedCrossRefGoogle Scholar
  2. [2]
    Allikmets R, Shroyer NF, Singh N, et al. (1997) Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science 277:1805–1807PubMedCrossRefGoogle Scholar
  3. [3]
    Allikmets R, Singh N, Sun H, et al. (1997) A photoreceptor cellspecific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet 15:236–246PubMedCrossRefGoogle Scholar
  4. [4]
    An E, Sen S, Park SK, Gordish-Dressman H, Hathout Y (2010) Identification of novel substrates for the serine protease HTRA1 in the human RPE secretome. Invest Ophthalmol Vis Sci (in press)Google Scholar
  5. [5]
    Baird PN, Hageman GS, Guymer RH (2009) New era for personalized medicine: the diagnosis and management of age-related macular degeneration. Clin Experiment Ophthalmol 37:814–821PubMedCrossRefGoogle Scholar
  6. [6]
    Baird PN, Guida E, Chu DT, Vu HT, Guymer RH (2004) The epsilon2 and epsilon4 alleles of the apolipoprotein gene are associated with age-related macular degeneration. Invest Ophthalmol Vis Sci 45:1311–1315PubMedCrossRefGoogle Scholar
  7. [7]
    Baum L, Chan WM, Li WY, et al. (2003) ABCA4 sequence variants in Chinese patients with age-related macular degeneration or Stargardt’s disease. Ophthalmologica 217:111–114PubMedCrossRefGoogle Scholar
  8. [8]
    Botto M, Fong KY, So AK, Koch C, Walport MJ (1990) Molecular basis of polymorphisms of human complement component C3. J Exp Med 172:1011–1017PubMedCrossRefGoogle Scholar
  9. [9]
    Cameron DJ, Yang Z, Gibbs D, et al. (2007) HTRA1 variant confers similar risks to geographic atrophy and neovascular age-related macular degeneration. Cell Cycle 6:1122–1125PubMedCrossRefGoogle Scholar
  10. [10]
    Chan CC, Shen D, Zhou M, et al. (2007) Human HtrA1 in the archived eyes with age-related macular degeneration. Trans Am Ophthalmol Soc 105:92–97; discussion 97–98PubMedGoogle Scholar
  11. [11]
    Chen LJ, Liu DTL, Tam POS, et al. (2006) Association of complement factor H polymorphisms with exudative age-related macular degeneration. Molecular vision 12:1536–1542PubMedGoogle Scholar
  12. [12]
    Chen W, Stambolian D, Edwards AO, et al. (2010) Genetic variants near TIMP3 and high-density lipoprotein-associated loci influence susceptibility to age-related macular degeneration. Proc Natl Acad Sci U S A 107:7401–7406PubMedCrossRefGoogle Scholar
  13. [13]
    Chien J, Staub J, Hu SI, et al. (2004) A candidate tumor suppressor HtrA1 is downregulated in ovarian cancer. Oncogene 23:1636–1644PubMedCrossRefGoogle Scholar
  14. [14]
    Clark SJ, Higman VA, Mulloy B, et al. (2006) His-384 allotypic variant of factor H associated with age-related macular degeneration has different heparin binding properties from the non-diseaseassociated form. J Biol Chem 281:24713–24720PubMedCrossRefGoogle Scholar
  15. [15]
    Conley YP, Jakobsdottir J, Mah T, et al. (2006) CFH, ELOVL4, PLEKHA1 and LOC387715 genes and susceptibility to age-related maculopathy: AREDS and CHS cohorts and meta-analyses. Hum Mol Genet 15:3206–3218PubMedCrossRefGoogle Scholar
  16. [16]
    Despriet DDG, van Duijn CM, Oostra BA, et al. (2009) Complement component C3 and risk of age-related macular degeneration. Ophthalmology 116:474–480PubMedCrossRefGoogle Scholar
  17. [17]
    Dewan A, Liu M, Hartman S, et al. (2006) HTRA1 promoter polymorphism in wet age-related macular degeneration. Science 314:989–992PubMedCrossRefGoogle Scholar
  18. [18]
    Edwards AO, Ritter R, 3rd, Abel KJ, et al. (2005) Complement factor H polymorphism and age-related macular degeneration. Science 308:421–424PubMedCrossRefGoogle Scholar
  19. [19]
    Fisher SA, Abecasis GR, Yashar BM, et al. (2005) Meta-analysis of genome scans of age-related macular degeneration. Hum Mol Genet 14:2257–2264PubMedCrossRefGoogle Scholar
  20. [20]
    Francis PJ, Appukuttan B, Simmons E, et al. (2008) Rhesus Monkeys and Humans Share Common Susceptibility Genes for Age-Related Macular Disease. Hum Mol Genet 17: 2673–2680PubMedCrossRefGoogle Scholar
  21. [21]
    Friedman DS, O’Colmain BJ, Munoz B, et al. (2004) Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 122:564–572PubMedCrossRefGoogle Scholar
  22. [22]
    Fritsche LG, Loenhardt T, Janssen A, et al. (2008) Age-related macular degeneration is associated with an unstable ARMS2 (LOC387715) mRNA. Nat Genet 40:892–896PubMedCrossRefGoogle Scholar
  23. [23]
    Fritsche LG, Freitag-Wolf S, Bettecken T, et al. (2009) Age-related macular degeneration and functional promoter and coding variants of the apolipoprotein E gene. Hum Mutat 30:1048–1053PubMedCrossRefGoogle Scholar
  24. [24]
    Giannakis E, Male DA, Ormsby RJ, et al. (2001) Multiple ligand binding sites on domain seven of human complement factor H. Int Immunopharmacol 1:433–443PubMedCrossRefGoogle Scholar
  25. [25]
    Gold B, Merriam JE, Zernant J, et al. (2006) Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet 38:458–462PubMedCrossRefGoogle Scholar
  26. [26]
    Gotoh N, Nakanishi H, Hayashi H, et al. (2009) ARMS2 (LOC387715) variants in Japanese patients with exudative agerelated macular degeneration and polypoidal choroidal vasculopathy. American journal of ophthalmology 147:1037–1041, 1041. e1031–1032PubMedCrossRefGoogle Scholar
  27. [27]
    Grau S, Richards PJ, Kerr B, et al. (2006) The role of human HtrA1 in arthritic disease. J Biol Chem 281:6124–6129PubMedCrossRefGoogle Scholar
  28. [28]
    Haab O (1885) Erkrankungen der Macula Lutea. Zentralbl Augenheilkd 9:384–391Google Scholar
  29. [29]
    Haddad S, Chen CA, Santangelo SL, Seddon JM (2006) The genetics of age-related macular degeneration: a review of progress to date. Surv Ophthalmol 51:316–363PubMedCrossRefGoogle Scholar
  30. [30]
    Hadley D, Orlin A, Brown G, et al.) Analysis of six genetic risk factors highly associated with AMD in the region surrounding ARMS2 and HTRA1 on chromosome 10, region q26. Invest Ophthalmol Vis Sci 51:2191–2196Google Scholar
  31. [31]
    Hageman GS, Hancox LS, Taiber AJ, et al. (2006) Extended haplotypes in the complement factor H (CFH) and CFH-related (CFHR) family of genes protect against age-related macular degeneration: characterization, ethnic distribution and evolutionary implications. Annals of medicine 38:592–604PubMedCrossRefGoogle Scholar
  32. [32]
    Hageman GS, Anderson DH, Johnson LV, et al. (2005) A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci U S A 102:7227–7232PubMedCrossRefGoogle Scholar
  33. [33]
    Haines JL, Hauser MA, Schmidt S, et al. (2005) Complement factor H variant increases the risk of age-related macular degeneration. Science 308:419–421PubMedCrossRefGoogle Scholar
  34. [34]
    He X, Ota T, Liu P, et al.) Downregulation of HtrA1 promotes resistance to anoikis and peritoneal dissemination of ovarian cancer cells. Cancer Res 70:3109–3118Google Scholar
  35. [35]
    Hecker LA, Edwards AO, Ryu E, et al. (2010) Genetic control of the alternative pathway of complement in humans and age-related macular degeneration. Hum Mol Genet 19:209–215PubMedCrossRefGoogle Scholar
  36. [36]
    Heinen S, Hartmann A, Lauer N, et al. (2009) Factor H-related protein 1 (CFHR-1) inhibits complement C5 convertase activity and terminal complex formation. Blood 114:2439–2447PubMedCrossRefGoogle Scholar
  37. [37]
    Hughes AE, Orr N, Esfandiary H, et al. (2006) A common CFH haplotype, with deletion of CFHR1 and CFHR3, is associated with lower risk of age-related macular degeneration. Nat Genet 38:1173–1177PubMedCrossRefGoogle Scholar
  38. [38]
    Jakobsdottir J, Conley YP, Weeks DE, Ferrell RE, Gorin MB (2008) C2 and CFB genes in age-related maculopathy and joint action with CFH and LOC387715 genes. PloS one 3:e2199PubMedCrossRefGoogle Scholar
  39. [39]
    Jakobsdottir J, Conley YP, Weeks DE, et al. (2005) Susceptibility genes for age-related maculopathy on chromosome 10q26. Am J Hum Genet 77:389–407PubMedCrossRefGoogle Scholar
  40. [40]
    Johnson PT, Betts KE, Radeke MJ, et al. (2006) Individuals homozygous for the age-related macular degeneration risk-conferring variant of complement factor H have elevated levels of CRP in the choroid. Proc Natl Acad Sci U S A 103:17456–17461PubMedCrossRefGoogle Scholar
  41. [41]
    Kanda A, Chen W, Othman M, et al. (2007) A variant of mitochondrial protein LOC387715/ARMS2, not HTRA1, is strongly associated with age-related macular degeneration. Proc Natl Acad Sci U S A 104:16227–16232PubMedCrossRefGoogle Scholar
  42. [42]
    Klaver CC, Kliffen M, van Duijn CM, et al. (1998) Genetic association of apolipoprotein E with age-related macular degeneration. Am J Hum Genet 63:200–206PubMedCrossRefGoogle Scholar
  43. [43]
    Klein RJ, Zeiss C, Chew EY, et al. (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308:385–389PubMedCrossRefGoogle Scholar
  44. [44]
    Kortvely E, Hauck SM, Duetsch G, et al. (2010) ARMS2 is a constituent of the extracellular matrix providing a link between familial and sporadic age-related macular degenerations. Invest Ophthalmol Vis Sci 51:79–88PubMedCrossRefGoogle Scholar
  45. [45]
    Ku CS, Loy EY, Pawitan Y, Chia KS) The pursuit of genome-wide association studies: where are we now? J Hum Genet 55:195–206Google Scholar
  46. [46]
    Laine M, Jarva H, Seitsonen S, et al. (2007) Y402H polymorphism of complement factor H affects binding affinity to C-reactive protein. J Immunol 178:3831–3836PubMedGoogle Scholar
  47. [47]
    Li M, Atmaca-Sonmez P, Othman M, et al. (2006) CFH haplotypes without the Y402H coding variant show strong association with susceptibility to age-related macular degeneration. Nat Genet 38:1049–1054PubMedCrossRefGoogle Scholar
  48. [48]
    Mahley RW, Rall SC, Jr. (2000) Apolipoprotein E: far more than a lipid transport protein. Annu Rev Genomics Hum Genet 1:507–537PubMedCrossRefGoogle Scholar
  49. [49]
    Maller J, George S, Purcell S, et al. (2006) Common variation in three genes, including a noncoding variant in CFH, strongly influences risk of age-related macular degeneration. Nat Genet 38:1055–1059PubMedCrossRefGoogle Scholar
  50. [50]
    McKay GJ, Dasari S, Patterson CC, Chakravarthy U, Silvestri G (2010) Complement component 3: an assessment of association with AMD and analysis of gene-gene and gene-environment interactions in a Northern Irish cohort. Mol Vis 16:194–199PubMedGoogle Scholar
  51. [51]
    Montes T, Tortajada A, Morgan BP, Rodriguez de Cordoba S and Harris CL (2009) Functional basis of protection against age-related macular degeneration conferred by a common polymorphism in complement factor B. Proc Natl Acad Sci U S A 106:4366–4371PubMedCrossRefGoogle Scholar
  52. [52]
    Mori K, Gehlbach PL, Kabasawa S, et al. (2007) Coding and noncoding variants in the CFH gene and cigarette smoking influence the risk of age-related macular degeneration in a Japanese population. Investigative ophthalmology & visual science 48:5315–5319CrossRefGoogle Scholar
  53. [53]
    Oka C, Tsujimoto R, Kajikawa M, et al. (2004) HtrA1 serine protease inhibits signaling mediated by Tgfbeta family proteins. Development 131:1041–1053PubMedCrossRefGoogle Scholar
  54. [54]
    Penfold PL, Killingsworth MC, Sarks SH (1985) Senile macular degeneration: the involvement of immunocompetent cells. Graefes Arch Clin Exp Ophthalmol 223:69–76PubMedCrossRefGoogle Scholar
  55. [55]
    Ricci F, Zampatti S, D’Abbruzzi F, et al. (2009) Typing of ARMS2 and CFH in age-related macular degeneration: case-control study and assessment of frequency in the Italian population. Archives of ophthalmology 127:1368–1372PubMedCrossRefGoogle Scholar
  56. [56]
    Rivera A, Fisher SA, Fritsche LG, et al. (2005) Hypothetical LOC387715 is a second major susceptibility gene for age-related macular degeneration, contributing independently of complement factor H to disease risk. Hum Mol Genet 14:3227–3236PubMedCrossRefGoogle Scholar
  57. [57]
    Rodriguez de Cordoba S, Esparza-Gordillo J, Goicoechea de Jorge E, Lopez-Trascasa M, Sanchez-Corral P (2004) The human complement factor H: functional roles, genetic variations and disease associations. Mol Immunol 41:355–367PubMedCrossRefGoogle Scholar
  58. [58]
    Ross RJ, Bojanowski CM, Wang JJ, et al. (2007) The LOC387715 polymorphism and age-related macular degeneration: replication in three case-control samples. Investigative ophthalmology & visual science 48:1128–1132CrossRefGoogle Scholar
  59. [59]
    Schaumberg DA, Hankinson SE, Guo Q, Rimm E, Hunter DJ (2007) A prospective study of 2 major age-related macular degeneration susceptibility alleles and interactions with modifiable risk factors. Arch Ophthalmol 125:55–62PubMedCrossRefGoogle Scholar
  60. [60]
    Schmid-Kubista KE, Tosakulwong N, Wu Y, et al. (2009) Contribution of copy number variation in the regulation of complement activation locus to development of age-related macular degeneration. Invest Ophthalmol Vis Sci 50:5070–5079PubMedCrossRefGoogle Scholar
  61. [61]
    Schmidt S, Saunders AM, De La Paz MA, et al. (2000) Association of the apolipoprotein E gene with age-related macular degeneration: possible effect modification by family history, age, and gender. Mol Vis 6:287–293PubMedGoogle Scholar
  62. [62]
    Schmidt S, Klaver C, Saunders A, et al. (2002) A pooled casecontrol study of the apolipoprotein E (APOE) gene in age-related maculopathy. Ophthalmic Genet 23:209–223PubMedCrossRefGoogle Scholar
  63. [63]
    Schork NJ, Murray SS, Frazer KA, Topol EJ (2009) Common vs. rare allele hypotheses for complex diseases. Curr Opin Genet Dev 19:212–219PubMedCrossRefGoogle Scholar
  64. [64]
    Schultz DW, Klein ML, Humpert A, et al. (2003) Lack of an association of apolipoprotein E gene polymorphisms with familial agerelated macular degeneration. Arch Ophthalmol 121:679–683PubMedCrossRefGoogle Scholar
  65. [65]
    Seddon JM, Cote J, Page WF, Aggen SH, Neale MC (2005) The US twin study of age-related macular degeneration: relative roles of genetic and environmental influences. Arch Ophthalmol 123:321–327PubMedCrossRefGoogle Scholar
  66. [66]
    Shroyer NF, Lewis RA, Yatsenko AN, Wensel TG, Lupski JR (2001) Cosegregation and functional analysis of mutant ABCR (ABCA4) alleles in families that manifest both Stargardt disease and agerelated macular degeneration. Hum Mol Genet 10:2671–2678PubMedCrossRefGoogle Scholar
  67. [67]
    Simonelli F, Margaglione M, Testa F, et al. (2001) Apolipoprotein E polymorphisms in age-related macular degeneration in an Italian population. Ophthalmic Res 33:325–328PubMedCrossRefGoogle Scholar
  68. [68]
    Skerka C, Zipfel PF (2008) Complement factor H related proteins in immune diseases. Vaccine 26 Suppl 8:I9–14PubMedCrossRefGoogle Scholar
  69. [69]
    Skerka C, Lauer N, Weinberger AA, et al. (2007) Defective complement control of factor H (Y402H) and FHL-1 in age-related macular degeneration. Mol Immunol 44:3398–3406PubMedCrossRefGoogle Scholar
  70. [70]
    Souied EH, Benlian P, Amouyel P, et al. (1998) The epsilon4 allele of the apolipoprotein E gene as a potential protective factor for exudative age-related macular degeneration. Am J Ophthalmol 125:353–359PubMedCrossRefGoogle Scholar
  71. [71]
    Spencer KL, Hauser MA, Olson LM, et al. (2007) Protective effect of complement factor B and complement component 2 variants in age-related macular degeneration. Human molecular genetics 16:1986–1992PubMedCrossRefGoogle Scholar
  72. [72]
    Spencer KL, Olson LM, Anderson BM, et al. (2008) C3 R102G polymorphism increases risk of age-related macular degeneration. Hum Mol Genet 17:1821–1824PubMedCrossRefGoogle Scholar
  73. [73]
    Strittmatter WJ, Saunders AM, Schmechel D, et al. (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A 90:1977–1981PubMedCrossRefGoogle Scholar
  74. [74]
    Thakkinstian A, Bowe S, McEvoy M, Smith W, Attia J (2006) Association between apolipoprotein E polymorphisms and age-related macular degeneration: A HuGE review and meta-analysis. Am J Epidemiol 164:813–822PubMedCrossRefGoogle Scholar
  75. [75]
    Wang G, Spencer KL, Court BL, et al. (2009) Localization of agerelated macular degeneration-associated ARMS2 in cytosol, not mitochondria. Invest Ophthalmol Vis Sci 50:308–-3090Google Scholar
  76. [76]
    Yang Z, Camp NJ, Sun H, et al. (2006) A variant of the HTRA1 gene increases susceptibility to age-related macular degeneration. Science 314:992–993PubMedCrossRefGoogle Scholar
  77. [77]
    Yang Z, Tong Z, Chen Y, et al. (2010) Genetic and functional dissection of HTRA1 and LOC387715 in age-related macular degeneration. PLoS genetics 6:e1000836PubMedCrossRefGoogle Scholar
  78. [78]
    Yates JRW, Sepp T, Matharu BK, et al. (2007) Complement C3 variant and the risk of age-related macular degeneration. The New England journal of medicine 357:553–561PubMedCrossRefGoogle Scholar
  79. [79]
    Yu J, Wiita P, Kawaguchi R, et al. (2007) Biochemical analysis of a common human polymorphism associated with age-related macular degeneration. Biochemistry 46:8451–8461PubMedCrossRefGoogle Scholar
  80. [80]
    Zarbin MA (2004) Current concepts in the pathogenesis of agerelated macular degeneration. Arch Ophthalmol 122:598–614PubMedCrossRefGoogle Scholar
  81. [81]
    Zareparsi S, Reddick AC, Branham KE, et al. (2004) Association of apolipoprotein E alleles with susceptibility to age-related macular degeneration in a large cohort from a single center. Invest Ophthalmol Vis Sci 45:1306–1310PubMedCrossRefGoogle Scholar
  82. [82]
    Zareparsi S, Branham KE, Li M, et al. (2005) Strong association of the Y402H variant in complement factor H at 1q32 with susceptibility to age-related macular degeneration. Am J Hum Genet 77:149–153PubMedCrossRefGoogle Scholar
  83. [83]
    Neale BM, Fagerness J, Reynolds R, Sobrin L, et al. (2010) Genome-wide association study of advanced age-related macular degeneration identifies a role of the hepatic lipase gene (LIPC). Proc Natl Acad Sci U S A 107:7395–400PubMedCrossRefGoogle Scholar
  84. [84]
    Chen W, Stambolian D, Edwards AO, et al. (2010) Genetic variants near TIMP3 and high-density lipoprotein-associated loci influence susceptibility to age-related macular degeneration. Proc Natl Acad Sci U S A 107:7401–6PubMedCrossRefGoogle Scholar
  85. [85]
    Fagerness J, Maller JB, Neale BM, et al. (2009) Variation near complement factor I is associated with risk of advanced AMD. Eur J Hum Genet 17:100–104PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ulrike Friedrich
    • 1
  • L. G. Fritsche
    • 1
  • B. H. F. Weber
    • 1
  1. 1.Institut für HumangenetikUniversität RegensburgRegensburg

Personalised recommendations