Behandlungsansätze bei trockener AMD

  • Zohar Yehoshua
  • Philip J. Rosenfeld


Die altersabhängige Makuladegeneration (AMD) ist in den Industriestaaten der Hauptgrund irreversibler Erblindung bei Menschen über 60 Jahren [1]. Schätzungsweise etwa 30% der Erwachsenen über 75 Jahren weisen Zeichen einer AMD auf, von denen etwa 10% ein fortgeschrittenes oder spätes Stadium der Erkrankung zeigen [2]. Die große Mehrheit der AMD-Patienten haben die nicht-exsudative oder trockene Form der Erkrankung, charakterisiert durch eine Konstellation bestimmter klinischer Zeichen, einschließlich Drusen, Pigmentanomalien (fokale Hyperoder Hypopigmentierungen des retinalen Pigmentepithels (RPE)) und geographischer Atrophie (GA) der Makula. Wie in der Age-Related Eye Disease Studie (AREDS) definiert, kann der Schweregrad der AMD in drei Kategorien eingeteilt werden: früh, intermediär und fortgeschritten.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Klein R, Klein BE, Linton KL (1992) Prevalence of age-related maculopathy. The Beaver Dam Eye Study. Ophthalmology 99(6):933-43PubMedGoogle Scholar
  2. [2]
    Friedman DS, O’Colmain BJ, Munoz B, et al. (2004) Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 122(4):564-72PubMedCrossRefGoogle Scholar
  3. [3]
    Ferris FL, Davis MD, Clemons TE, et al. (2005) A simplified severity scale for age-related macular degeneration: AREDS Report No. 18. Arch Ophthalmol 123(11):1570-4PubMedCrossRefGoogle Scholar
  4. [4]
    AREDS (2001) A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol 119(10):1417-36Google Scholar
  5. [5]
    Evans J (2008) Antioxidant supplements to prevent or slow down the progression of AMD: a systematic review and meta-analysis. Eye (Lond) 22(6):751-60Google Scholar
  6. [6]
    Thornton J, Edwards R, Mitchell P, et al. (2005) Smoking and agerelated macular degeneration: a review of association. Eye (Lond) 19(9):935-44Google Scholar
  7. [7]
    Seddon JM, Cote J, Rosner B (2003) Progression of age-related macular degeneration: association with dietary fat, transunsaturated fat, nuts, and fish intake. Arch Ophthalmol 121(12):1728-37PubMedCrossRefGoogle Scholar
  8. [8]
    Ding X, Patel M, Chan CC (2009) Molecular pathology of agerelated macular degeneration. Prog Retin Eye Res 28(1):1-18PubMedCrossRefGoogle Scholar
  9. [9]
    Kaidzu S, Tanito M, Ohira A, et al. (2008) Immunohistochemical analysis of aldehyde-modified proteins in drusen in cynomolgus monkeys (Macaca fascicularis). Exp Eye Res 86(5):856-9PubMedCrossRefGoogle Scholar
  10. [10]
    Parodi MB, Virgili G, Evans JR (2009) Laser treatment of drusen to prevent progression to advanced age-related macular degeneration. Cochrane Database Syst Rev (3):CD006537PubMedGoogle Scholar
  11. [11]
    Csaky KG, Richman EA, Ferris FL, 3rd. (2008) Report from the NEI/FDA Ophthalmic Clinical Trial Design and Endpoints Symposium. Invest Ophthalmol Vis Sci 49(2):479-89PubMedCrossRefGoogle Scholar
  12. [12]
    Ralston Jr PG, Sloan D, Waters-Honcu D, et al. (2010) A Pilot, Open-Label Study of the Safety of MC-1101 in Both Normal Volunteers and Patients With Early Nonexudative Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 51:E-Abstract 913Google Scholar
  13. [13]
    Tao W, Wen R, Goddard MB, et al. (2002) Encapsulated cell-based delivery of CNTF reduces photoreceptor degeneration in animal models of retinitis pigmentosa. Invest Ophthalmol Vis Sci 43(10):3292-8PubMedGoogle Scholar
  14. [14]
    Beltran WA, Zhang Q, Kijas JW, et al. (2003) Cloning, mapping, and retinal expression of the canine ciliary neurotrophic factor receptor alpha (CNTFRalpha). Invest Ophthalmol Vis Sci 44(8):3642-9PubMedCrossRefGoogle Scholar
  15. [15]
    Emerich DF, Thanos CG. (2008) NT-501: an ophthalmic implant of polymer-encapsulated ciliary neurotrophic factor-producing cells. Curr Opin Mol Ther 10(5):506-15PubMedGoogle Scholar
  16. [16]
    Williams GA, Tao W (2009) A Phase II Study of Encapsulated CNTF Secreting Cell Implant (NT-501) in Patients With Visual Acuity Impairment Associated With Atrophic Macular Degeneration. Invest Ophthalmol Vis Sci 50:E-Abstract 5003CrossRefGoogle Scholar
  17. [17]
    Mata NL, Vogel R (2010) Pharmacologic treatment of atrophic age-related macular degeneration. Curr Opin Ophthalmol 21(3):190-6PubMedCrossRefGoogle Scholar
  18. [18]
    Saylor M, McLoon LK, Harrison AR, et al. (2009) Experimental and clinical evidence for brimonidine as an optic nerve and retinal neuroprotective agent: an evidence-based review. Arch Ophthalmol 127(4):402-6PubMedCrossRefGoogle Scholar
  19. [19]
    Schmitz-Valckenberg S, Holz FG, Bird AC, et al. (2008) Fundus autofluorescence imaging: review and perspectives. Retina 28(3):385-409PubMedCrossRefGoogle Scholar
  20. [20]
    Radu RA, Han Y, Bui TV, et al. (2005) Reductions in serum vitamin A arrest accumulation of toxic retinal fluorophores: a potential therapy for treatment of lipofuscin-based retinal diseases. Invest Ophthalmol Vis Sci 46(12):4393-401PubMedCrossRefGoogle Scholar
  21. [21]
    Kubota R, Birch D, David R (2009) Phase 1, Dose-Escalating Study of the Safety, Tolerability, and Pharmacokinetics of ACU-4429 in Healthy Volunteers. Invest Ophthalmol Vis Sci 50:E-Abstract 5009CrossRefGoogle Scholar
  22. [22]
    Johnson LV, Leitner WP, Rivest AJ, et al. (2002) The Alzheimer’s A beta -peptide is deposited at sites of complement activation in pathologic deposits associated with aging and age-related macular degeneration. Proc Natl Acad Sci U S A 99(18):11830-5PubMedCrossRefGoogle Scholar
  23. [23]
    Ding JD, Lin J, Mace BE, et al. (2008) Targeting age-related macular degeneration with Alzheimer’s disease based immunotherapies: anti-amyloid-beta antibody attenuates pathologies in an age-related macular degeneration mouse model. Vision Res 48(3):339-45PubMedCrossRefGoogle Scholar
  24. [24]
    Beatty S, Koh H, Phil M, et al. (2000) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 45(2):115-34PubMedCrossRefGoogle Scholar
  25. [25]
    AREDS (2000) Risk factors associated with age-related macular degeneration. A case-control study in the age-related eye disease study: Age-Related Eye Disease Study Report Number 3. Ophthalmology 107(12):2224-32CrossRefGoogle Scholar
  26. [26]
    Tanito M, Li F, Elliott MH, et al. (2007) Protective effect of TEMPOL derivatives against light-induced retinal damage in rats. Invest Ophthalmol Vis Sci 48(4):1900-5PubMedCrossRefGoogle Scholar
  27. [27]
    Sternberg P, Rosenfeld PJ, Slakter JS, et al. (2010) Topical OT-551 for Treating Geographic Atrophy: Phase II Results. Invest Ophthalmol Vis Sci 51:E-Abstract 6416Google Scholar
  28. [28]
    Wong WT, Kam W, Cunningham D, et al. (2010) Topical Administration of Anti-Oxidant, OT-551 for the Treatment of Geographic Atrophy: Results of a Phase I/II Clinical Trial. Invest Ophthalmol Vis Sci 51:E-Abstract 6418Google Scholar
  29. [29]
    Gehrs KM, Jackson JR, Brown EN, et al. (2010) Complement, agerelated macular degeneration and a vision of the future. Arch Ophthalmol 128(3):349-58PubMedCrossRefGoogle Scholar
  30. [30]
    Anderson DH, Radeke MJ, Gallo NB, et al. (2010) The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited. Prog Retin Eye Res 29(2):95-112PubMedCrossRefGoogle Scholar
  31. [31]
    Skeie JM, Fingert J, Russell S, et al. (2010) Complement Component C5a Activates Icam-1 Expression on Human Choroidal Endothelial Cells. Invest Ophthalmol Vis SciGoogle Scholar
  32. [32]
    Patel M, Chan CC (2008) Immunopathological aspects of age-related macular degeneration. Semin Immunopathol 30(2):97-110PubMedCrossRefGoogle Scholar
  33. [33]
    Klein ML, Ferris FL, 3rd, Francis PJ, et al. (2010) Progression of Geographic Atrophy and Genotype in Age-Related Macular Degeneration. OphthalmologyGoogle Scholar
  34. [34]
    Scholl HP, Fleckenstein M, Fritsche LG, et al. (2009) CFH, C3 and ARMS2 are significant risk loci for susceptibility but not for disease progression of geographic atrophy due to AMD. PLoS One 4(10):e7418PubMedCrossRefGoogle Scholar
  35. [35]
    Nozaki M, Raisler BJ, Sakurai E, et al. (2006) Drusen complement components C3a and C5a promote choroidal neovascularization. Proc Natl Acad Sci U S A 103(7):2328-33PubMedCrossRefGoogle Scholar
  36. [36]
    Holers EA (2009) TT30, a Novel Human Protein Therapeutic, Selectively Modulates the Complement Alternative Pathway by Targeted Supplementation of Local Factor H Activity. 51st Annual Meeting of the American Society of Hematology New Orleans, LAGoogle Scholar
  37. [37]
    Risitano EA (2009) TT30, A Novel Regulator of the Complement Alternative Pathway (CAP), Inhibits Hemolysis of Paroxysmal Nocturnal Hemoglobinuria (PNH) Erythrocytes and Prevents Upstream C3 Binding On Their Surface in An In Vitro Model. 51st Annual Meeting of the American Society of Hematology New Orleans, LA 2009Google Scholar
  38. [38]
    Landa G, Butovsky O, Shoshani J, et al. (2008) Weekly vaccination with Copaxone (glatiramer acetate) as a potential therapy for dry age-related macular degeneration. Curr Eye Res 33(11):1011-3PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Zohar Yehoshua
    • 1
  • Philip J. Rosenfeld
    • 1
  1. 1.Bascom Palmer Eye InstituteMiamiUSA

Personalised recommendations