Advertisement

Kombinationstherapien zur Behandlung der AMD

  • Mark R. Barakat
  • Nathan Steinle
  • Peter K. Kaiser
Chapter

Zusammenfassung

Die altersbedingte Makuladegeneration (AMD) ist die häufigste Erblindungsursache von Menschen über 50 Jahren in der westlichen Welt [1–3]. Die häufigste Ursache für einen gravierenden Verlust der Sehkraft bei AMD ist wiederum die Entstehung einer choroidalen Neovaskularisation (CNV), also die Ausbildung einer sog. exsudativen AMD (Synonyme: feuchte AMD, neovaskuläre AMD). Aufgrund der zunehmenden Lebenserwartung wird mit einem Anstieg der weltweiten Prävalenz der exsudativen AMD gerechnet [4]. Glücklicherweise gab es in jüngerer Zeit viele Fortschritte in der Behandlung der exsudativen AMD, wie z. B. die Einführung medikamentöser Therapien gegen CNV, die die Möglichkeiten zur Bekämpfung dieser verheerenden Erkrankung verbessert haben.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Rubin GS, et al. (1994) Visual impairment and disability in older adults. Optometry & Vision Science 71(12): 750-60CrossRefGoogle Scholar
  2. [2]
    Williams RA, et al. (1998) The psychosocial impact of macular degeneration. Archives of Ophthalmology 116(4): 514-20PubMedGoogle Scholar
  3. [3]
    Friedman DS, et al. (2004) Prevalence of age-related macular degeneration in the United States. Archives of Ophthalmology 122(4): 564-72PubMedCrossRefGoogle Scholar
  4. [4]
    Kourlas H, et al. (2007) Ranibizumab for the treatment of neovascular age-related macular degeneration: a review. Clinical Therapeutics 29(9): 1850-61PubMedCrossRefGoogle Scholar
  5. [5]
    Klein R, et al. (1997) The five-year incidence and progression of age-related maculopathy: the Beaver Dam Eye Study. Ophthalmology 104(1): 7-21PubMedGoogle Scholar
  6. [6]
    Zarbin MA (2004) Current concepts in the pathogenesis of age-related macular degeneration. Archives of Ophthalmology 122(4): 598-614PubMedCrossRefGoogle Scholar
  7. [7]
    Pe’er J, et al. (1995) Hypoxia-induced expression of vascular endothelial growth factor by retinal cells is a common factor in neovascularizing ocular diseases. Laboratory Investigation 72(6): 638-45PubMedGoogle Scholar
  8. [8]
    Grunwald JE, et al. (2005) Reduced foveolar choroidal blood flow in eyes with increasing AMD severity. Investigative Ophthalmology & Visual Science 46(3): 1033-8CrossRefGoogle Scholar
  9. [9]
    Yoshida S, et al. (2004) Induction of IL-8, MCP-1, and bFGF by TNF-alpha in retinal glial cells: implications for retinal neovascularization during post-ischemic inflammation. Graefes Archive for Clinical & Experimental Ophthalmology 242(5): 409-13CrossRefGoogle Scholar
  10. [10]
    Spaide RF (2006) Rationale for combination therapies for choroidal neovascularization. American Journal of Ophthalmology 141(1): 149-56PubMedCrossRefGoogle Scholar
  11. [11]
    Gille J (2006) Antiangiogenic cancer therapies get their act together: current developments and future prospects of growth factor- and growth factor receptor-targeted approaches. Experimental Dermatology 15(3): 175-86PubMedCrossRefGoogle Scholar
  12. [12]
    Caprioni F, et al. (2007) Bevacizumab in the treatment of metastatic colorectal cancer. Future Oncology 3(2): 141-8PubMedCrossRefGoogle Scholar
  13. [13]
    Giaccone G (2007) The potential of antiangiogenic therapy in non-small cell lung cancer. Clinical Cancer Research 13(7): 1961-70PubMedCrossRefGoogle Scholar
  14. [14]
    Mancuso A, et al. (2006) Current therapies and advances in the treatment of pancreatic cancer. Critical Reviews in Oncology-Hematology 58(3): 231-41CrossRefGoogle Scholar
  15. [15]
    Han ES, et al. (2007) Bevacizumab in the treatment of ovarian cancer. Expert Review of Anticancer Therapy 7(10): 1339-45PubMedCrossRefGoogle Scholar
  16. [16]
    Taiwo BO (2006) Antiretroviral treatment: current approach and future prospects. African Journal of Medicine & Medical Sciences 35 Suppl: 1-11Google Scholar
  17. [17]
    Sturmer M, et al. (2007) Quadruple nucleoside therapy with zidovudine, lamivudine, abacavir and tenofovir in the treatment of HIV. Antiviral Therapy 12(5): 695-703PubMedGoogle Scholar
  18. [18]
    Weir MR (2008) Risk-based classification of hypertension and the role of combination therapy. Journal of Clinical Hypertension 10(1 Suppl 1): 4-12PubMedGoogle Scholar
  19. [19]
    Elliott WJ (2008) What factors contribute to the inadequate control of elevated blood pressure? Journal of Clinical Hypertension 10(1 Suppl 1): 20-6PubMedGoogle Scholar
  20. [20]
    Kaiser PK (2005) Verteporfin therapy in combination with triamcinolone: published studies investigating a potential synergistic effect. Current Medical Research & Opinion 21(5): 705-13CrossRefGoogle Scholar
  21. [21]
    Kaiser PK (2005) Steroids for choroidal neovascularization. American Journal of Ophthalmology 139(3): 533-5PubMedCrossRefGoogle Scholar
  22. [22]
    Bandi N, et al. (2001) Budesonide reduces vascular endothelial growth factor secretion and expression in airway (Calu-1) and alveolar (A549) epithelial cells. European Journal of Pharmacology 425(2): 109-16PubMedCrossRefGoogle Scholar
  23. [23]
    Folkman J, et al. (1987) Angiostatic steroids. Method of discovery and mechanism of action. Annals of Surgery 206(3): 374-83PubMedCrossRefGoogle Scholar
  24. [24]
    Schmidt-Erfurth U, et al. (2000) Mechanisms of action of photodynamic therapy with verteporfin for the treatment of agerelated macular degeneration. Survey of Ophthalmology 45(3): 195-214PubMedCrossRefGoogle Scholar
  25. [25]
    Schmidt-Erfurth U, et al. (1994) Vascular targeting in photodynamic occlusion of subretinal vessels. Ophthalmology 101(12): 1953-61PubMedGoogle Scholar
  26. [26]
    Schlotzer-Schrehardt U, et al. (2002) Dose-related structural effects of photodynamic therapy on choroidal and retinal structures of human eyes. Graefes Archive for Clinical & Experimental Ophthalmology 240(9): 748-57CrossRefGoogle Scholar
  27. [27]
    Schmidt-Erfurth U, et al. (2003) Influence of photodynamic therapy on expression of vascular endothelial growth factor (VEGF), VEGF receptor 3, and pigment epithelium-derived factor. Investigative Ophthalmology & Visual Science 44(10): 4473-80CrossRefGoogle Scholar
  28. [28]
    Kaiser PK (2007) Verteporfin photodynamic therapy and anti-angiogenic drugs: potential for combination therapy in exudative age-related macular degeneration. Curr Med Res Opin 23(3): 477-87PubMedCrossRefGoogle Scholar
  29. [29]
    Verteporfin Roundtable (2005) Guidelines for using verteporfin (Visudyne) in photodynamic therapy for choroidal neovascularization due to age-related macular degeneration and other causes: update. Retina 25(2): 119-34CrossRefGoogle Scholar
  30. [30]
    Bressler NM, et al. (2001) Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: two-year results of 2 randomized clinical trials-tap report 2. Archives of Ophthalmology 119(2): 198-207PubMedGoogle Scholar
  31. [31]
    Verteporfin In Photodynamic Therapy Study (2001) Verteporfin therapy of subfoveal choroidal neovascularization in age-related macular degeneration: two-year results of a randomized clinical trial including lesions with occult with no classic choroidal neovascularization–verteporfin in photodynamic therapy report 2. American Journal of Ophthalmology 131(5): 541-60CrossRefGoogle Scholar
  32. [32]
    Azab M, et al. (2005) Verteporfin therapy of subfoveal minimally classic choroidal neovascularization in age-related macular degeneration: 2-year results of a randomized clinical trial. Archives of Ophthalmology 123(4): 448-57PubMedCrossRefGoogle Scholar
  33. [33]
    Adamis AP, et al. (2005) The role of vascular endothelial growth factor in ocular health and disease. Retina 25(2): 111-8PubMedCrossRefGoogle Scholar
  34. [34]
    Gragoudas ES, et al. (2004) Pegaptanib for neovascular age-related macular degeneration. New England Journal of Medicine 351(27): 2805-16PubMedCrossRefGoogle Scholar
  35. [35]
    Ruckman J, et al. (1998) 2’-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGFinduced vascular permeability through interactions requiring the exon 7-encoded domain. Journal of Biological Chemistry 273(32): 20556-67PubMedCrossRefGoogle Scholar
  36. [36]
    Gaudreault J, et al. (2005) Preclinical pharmacokinetics of Ranibizumab (rhuFabV2) after a single intravitreal administration. Investigative Ophthalmology & Visual Science 46(2): 726-33CrossRefGoogle Scholar
  37. [37]
    Rosenfeld PJ, et al. (2006) Ranibizumab for neovascular age-related macular degeneration. New England Journal of Medicine 355(14): 1419-31PubMedCrossRefGoogle Scholar
  38. [38]
    Brown DM, et al. (2006) Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med 355(14): 1432-44PubMedCrossRefGoogle Scholar
  39. [39]
    Heier JS, et al. (2006) Ranibizumab for treatment of neovascular age-related macular degeneration: a phase I/II multicenter, controlled, multidose study. Ophthalmology 113(4): 633.e1-4CrossRefGoogle Scholar
  40. [40]
    Hurwitz H, et al. (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. New England Journal of Medicine 350(23): 2335-42PubMedCrossRefGoogle Scholar
  41. [41]
    Waisbourd M, et al. (2007) Targeting vascular endothelial growth factor: a promising strategy for treating age-related macular degeneration. Drugs & Aging 24(8): 643-62CrossRefGoogle Scholar
  42. [42]
    Avery RL, et al. (2006) Intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration. Ophthalmology 113(3): 363-372.e5PubMedCrossRefGoogle Scholar
  43. [43]
    Bashshur ZF, et al. (2006) Intravitreal bevacizumab for the management of choroidal neovascularization in age-related macular degeneration. American Journal of Ophthalmology 142(1): 1-9PubMedCrossRefGoogle Scholar
  44. [44]
    Costa RA, et al. (2006) Intravitreal bevacizumab for choroidal neovascularization caused by AMD (IBeNA Study): results of a phase 1 dose-escalation study. Investigative Ophthalmology & Visual Science 47(10): 4569-78CrossRefGoogle Scholar
  45. [45]
    Spaide RF, et al. (2006) Intravitreal bevacizumab treatment of choroidal neovascularization secondary to age-related macular degeneration. Retina 26(4): 383-90PubMedCrossRefGoogle Scholar
  46. [46]
    Rich RM, et al. (2006) Short-term safety and efficacy of intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration. Retina 26(5): 495-511PubMedCrossRefGoogle Scholar
  47. [47]
    Slakter JS, et al. (2006) Anecortave acetate (15 milligrams) versus photodynamic therapy for treatment of subfoveal neovascularization in age-related macular degeneration. Ophthalmology 113(1): 3-13PubMedCrossRefGoogle Scholar
  48. [48]
    Clark AF (1997) AL-3789: a novel ophthalmic angiostatic steroid. Expert Opinion on Investigational Drugs 6(12): 1867-77PubMedCrossRefGoogle Scholar
  49. [49]
    Kwak N, et al. (2000) VEGF is major stimulator in model of choroidal neovascularization. Investigative Ophthalmology & Visual Science 41(10): 3158-64Google Scholar
  50. [50]
    Shen J, et al. (2006) Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. Gene Therapy 13(3): 225-34PubMedCrossRefGoogle Scholar
  51. [51]
    Ciulla TA, et al. (2003) Squalamine lactate reduces choroidal neovascularization in a laser-injury model in the rat. Retina 23(6): 808-14PubMedCrossRefGoogle Scholar
  52. [52]
    Campochiaro PA, et al. (2006) Adenoviral vector-delivered pigment epithelium-derived factor for neovascular age-related macular degeneration: results of a phase I clinical trial. Human Gene Therapy 17(2): 167-76PubMedCrossRefGoogle Scholar
  53. [53]
    Raicu M, et al. (1993) Radiation damage to endothelial cells in vitro, as judged by the micronucleus assay. Mutagenesis 8(4): 335-9PubMedCrossRefGoogle Scholar
  54. [54]
    Schilling H, et al. (1997) Long-term results after low dose ocular irradiation for choroidal haemangiomas. Br J Ophthalmol 81(4): 267-73PubMedCrossRefGoogle Scholar
  55. [55]
    Verma L, et al. (2000) New approaches in the management of choroidal neovascular membrane in age-related macular degeneration. Indian J Ophthalmol 48(4): 263-78PubMedGoogle Scholar
  56. [56]
    Comer GM, et al. (2004) Current and future treatment options for nonexudative and exudative age-related macular degeneration. Drugs Aging 21(15): 967-92PubMedCrossRefGoogle Scholar
  57. [57]
    Zambarakji HJ, et al. (2006) Proton beam irradiation for neovascular age-related macular degeneration. Ophthalmology 113(11): 2012-9PubMedCrossRefGoogle Scholar
  58. [58]
    Ciulla TA, Danis RP, Harris A (1998) Age-related macular degeneration: a review of experimental treatments. Surv Ophthalmol 43(2): 134-46PubMedCrossRefGoogle Scholar
  59. [59]
    Parsons JT, et al. (1994) Radiation retinopathy after externalbeam irradiation: analysis of time-dose factors. Int J Radiat Oncol Biol Phys 30(4): 765-73PubMedGoogle Scholar
  60. [60]
    Brown GC, et al. (1982) Radiation retinopathy. Ophthalmology 89(12): 1494-501PubMedGoogle Scholar
  61. [61]
    Valmaggia C, Ries G, Ballinari P (2002) Radiotherapy for subfoveal choroidal neovascularization in age-related macular degeneration: a randomized clinical trial. Am J Ophthalmol 133(4): 521-9PubMedCrossRefGoogle Scholar
  62. [62]
    Sivagnanavel V, et al. (2004) Radiotherapy for neovascular agerelated macular degeneration. Cochrane Database Syst Rev (4): CD004004PubMedGoogle Scholar
  63. [63]
    A prospective, randomized, double-masked trial on radiation therapy for neovascular age-related macular degeneration (RAD Study) (1999) Radiation Therapy for Age-related Macular Degeneration. Ophthalmology 106(12): 2239-47CrossRefGoogle Scholar
  64. [64]
    Anders N, et al. (1998) [Radiotherapy of exudative senile macular degeneration. A prospective controlled study]. Ophthalmologe 95(11): 760-4PubMedCrossRefGoogle Scholar
  65. [65]
    Eter N, Schuller H, Spitznas M (2001) Radiotherapy for agerelated macular degeneration: is there a benefit for classic CNV? Int Ophthalmol 24(1): 13-9PubMedCrossRefGoogle Scholar
  66. [66]
    Bergink GJ, et al. (1998) A randomized controlled clinical trial on the efficacy of radiation therapy in the control of subfoveal choroidal neovascularization in age-related macular degeneration: radiation versus observation. Graefes Arch Clin Exp Ophthalmol 236(5): 321-5PubMedCrossRefGoogle Scholar
  67. [67]
    Char DH, et al. (1999) Randomized trial of radiation for agerelated macular degeneration. Am J Ophthalmol 127(5): 574-8PubMedCrossRefGoogle Scholar
  68. [68]
    Ciulla TA, et al. (2002) Proton therapy for exudative age-related macular degeneration: a randomized, sham-controlled clinical trial. Am J Ophthalmol 134(6): 905-6PubMedCrossRefGoogle Scholar
  69. [69]
    Marcus DM, et al. (2001) External beam irradiation of subfoveal choroidal neovascularization complicating age-related macular degeneration: one-year results of a prospective, double-masked, randomized clinical trial. Arch Ophthalmol 2): 171-80Google Scholar
  70. [70]
    Kobayashi H (2000) Age-related macular degeneration: longterm results of radiotherapy for subfoveal neovascular membranes. Am J Ophthalmol 130(5): 617-35PubMedCrossRefGoogle Scholar
  71. [71]
    Hart PM, et al. (2002) Visual outcomes in the subfoveal radiotherapy study: a randomized controlled trial of teletherapy for agerelated macular degeneration. Arch Ophthalmol 120(8): 1029-38PubMedGoogle Scholar
  72. [72]
    Kacperek A, Briggs M, Sheen M, Damato BE, Errington RD, Harding S (2001) Macular degeneration treatment at Clatterbridge Centre for oncology: treatment and preliminary results. Physica Medica 17 (Suppl 3): 7-9Google Scholar
  73. [73]
    Postgens H, Bodanowitz S, Kroll P (1997) Low-dose radiation therapy for age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 235(10): 656-61PubMedCrossRefGoogle Scholar
  74. [74]
    Spaide RF, et al. (1998) External beam radiation therapy for choroidal neovascularization. Ophthalmology 105(1): 24-30PubMedCrossRefGoogle Scholar
  75. [75]
    Stalmans P, Leys A, Van Limbergen E (1997) External beam radiotherapy (20 Gy, 2 Gy fractions) fails to control the growth of choroidal neovascularization in age-related macular degeneration: a review of 111 cases. Retina 17(6): 481-92PubMedGoogle Scholar
  76. [76]
    Marcus DM, et al. (2004) Radiotherapy for recurrent choroidal neovascularisation complicating age related macular degeneration. Br J Ophthalmol 88(1): 114-9PubMedCrossRefGoogle Scholar
  77. [77]
    Marcus DM, et al. (2004) The age-related macular degeneration radiotherapy trial (AMDRT): one year results from a pilot study. Am J Ophthalmol 138(5): 818-28PubMedCrossRefGoogle Scholar
  78. [78]
    Barak A, et al. (2005) A phase I trial of stereotactic external beam radiation for subfoveal choroidal neovascular membranes in age-related macular degeneration. Br J Radiol 78 (933): 827-31PubMedCrossRefGoogle Scholar
  79. [79]
    Flaxel CJ, et al. (2000) Proton beam irradiation of subfoveal choroidal neovascularisation in age-related macular degeneration. Eye (Lond) 14 ( Pt 2): 155-64Google Scholar
  80. [80]
    Bekkering GE, et al. (2009) The effectiveness and safety of proton radiation therapy for indications of the eye : a systematic review. Strahlenther Onkol 185(4): 211-21PubMedCrossRefGoogle Scholar
  81. [81]
    Harding S, Sen J (2002) Percision low-dose proton beam radiotherapy of subfoveal choroidal neovascularization in age-related macular degeneration (abstract). Orlando: American Academy of Ophthalmology 281 (abstract)Google Scholar
  82. [82]
    Pharmacological Therapy for Macular Degeneration Study Group (1997) Interferon alfa-2a is ineffective for patients with choroidal neovascularization secondary to age-related macular degeneration. Results of a prospective randomized placebocontrolled clinical trial. Arch Ophthalmol 115(7): 865-72Google Scholar
  83. [83]
    Bellmann C, et al. (2003) Visual acuity and contrast sensitivity in patients with neovascular age-related macular degeneration. Results from the Radiation Therapy for Age-Related Macular Degeneration (RAD-) Study. Graefes Arch Clin Exp Ophthalmol 241(12): 968-74PubMedCrossRefGoogle Scholar
  84. [84]
    Finger PT, et al. (1999) Ophthalmic plaque radiotherapy for age-related macular degeneration associated with subretinal neovascularization. Am J Ophthalmol 127(2): 170-7PubMedCrossRefGoogle Scholar
  85. [85]
    Berta A, Vamosi P (1995) Irradiation of macular subretinal neovascularization using Ruthenium applicators. Szemeset (Hung J Ophthalmol) (132): 67-75Google Scholar
  86. [86]
    Finger PT, et al. (2003) Palladium-103 plaque radiation therapy for macular degeneration: results of a 7 year study. Br J Ophthalmol 87(12): 1497-503PubMedCrossRefGoogle Scholar
  87. [87]
    Jaakkola A, et al. (2005) Strontium plaque brachytherapy for exudative age-related macular degeneration: three-year results of a randomized study. Ophthalmology 112(4): 567-73PubMedCrossRefGoogle Scholar
  88. [88]
    Avila MP, et al. (2009) Twelve-month safety and visual acuity results from a feasibility study of intraocular, epiretinal radiation therapy for the treatment of subfoveal CNV secondary to AMD. Retina 29(2): 157-69PubMedCrossRefGoogle Scholar
  89. [89]
    Avila MP, et al. (2009) Twelve-month short-term safety and visualacuity results from a multicentre prospective study of epiretinal strontium-90 brachytherapy with bevacizumab for the treatment of subfoveal choroidal neovascularisation secondary to agerelated macular degeneration. Br J Ophthalmol 93(3): 305-9PubMedCrossRefGoogle Scholar
  90. [90]
    Avila MP, et al. (2009) Twelve-month safety and visual acuity results from a feasibility study of intraocular, epiretinal radiation therapy for the treatment of subfoveal CNV secondary to AMD. Retina 29(2): 157-69PubMedCrossRefGoogle Scholar
  91. [91]
    Macular Photocoagulation Study Group (1986) Argon laser photocoagulation for neovascular maculopathy. Three-year results from randomized clinical trials. Arch Ophthalmol 104(5): 694-701Google Scholar
  92. [92]
    Macular Photocoagulation Study Group (1991) Laser photocoagulation of subfoveal neovascular lesions in age-related macular degeneration. Results of a randomized clinical trial. Arch Ophthalmol 109(9): 1220-31Google Scholar
  93. [93]
    Macular Photocoagulation Study Group (1994) Visual outcome after laser photocoagulation for subfoveal choroidal neovascularization secondary to age-related macular degeneration. The influence of initial lesion size and initial visual acuity. Arch Ophthalmol 112(4): 480-8Google Scholar
  94. [94]
    Berger AS, Kaplan HJ (1992) Clinical experience with the surgical removal of subfoveal neovascular membranes. Short-term postoperative results. Ophthalmology 99(6): 969-75; discussion 975-6PubMedGoogle Scholar
  95. [95]
    Thomas MA, et al. (1992) Surgical management of subfoveal choroidal neovascularization. Ophthalmology 99(6): 952-68; discussion 975-6PubMedGoogle Scholar
  96. [96]
    Machemer R, Steinhorst UH (1993) Retinal separation, retinotomy, and macular relocation: II. A surgical approach for age-related macular degeneration? Graefes Arch Clin Exp Ophthalmol 231(11): 635-41PubMedCrossRefGoogle Scholar
  97. [97]
    Algvere PV, et al. (1994) Transplantation of fetal retinal pigment epithelium in age-related macular degeneration with subfoveal neovascularization. Graefes Arch Clin Exp Ophthalmol 232(12): 707-16PubMedCrossRefGoogle Scholar
  98. [98]
    Gillies MC, et al. (1993) Treatment of choroidal neovascularisation in age-related macular degeneration with interferon alfa-2a and alfa-2b. Br J Ophthalmol 77(12): 759-65PubMedCrossRefGoogle Scholar
  99. [99]
    Kirkpatrick JN, Dick AD, Forrester JV (1993) Clinical experience with interferon alfa-2a for exudative age-related macular degeneration. Br J Ophthalmol 77(12): 766-70PubMedCrossRefGoogle Scholar
  100. [100]
    Rosenfeld PJ, Rich RM, Lalwani GA (2006) Ranibizumab: Phase III clinical trial results. Ophthalmol Clin North Am 19(3): 361-72PubMedGoogle Scholar
  101. [101]
    Alon T, et al. (1995) Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1(10): 1024-8PubMedCrossRefGoogle Scholar
  102. [102]
    Emerson MV, Lauer AK (2007) Emerging therapies for the treatment of neovascular age-related macular degeneration and diabetic macular edema. BioDrugs 21(4): 245-57PubMedCrossRefGoogle Scholar
  103. [103]
    Nishijima K, et al. (2007) Vascular endothelial growth factor-A is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury. Am J Pathol 171(1): 53-67PubMedCrossRefGoogle Scholar
  104. [104]
    Schlingemann RO (2004) Role of growth factors and the wound healing response in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 242(1): 91-101PubMedCrossRefGoogle Scholar
  105. [105]
    Shah GK, Sang DN, Hughes MS (2009) Verteporfin combination regimens in the treatment of neovascular age-related macular degeneration. Retina 29(2): 133-48PubMedCrossRefGoogle Scholar
  106. [106]
    Bergers G, et al. (2003) Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. Journal of Clinical Investigation 111(9): 1287-95PubMedGoogle Scholar
  107. [107]
    Bradley J, et al. (2007) Combination therapy for the treatment of ocular neovascularization. Angiogenesis 10(2): 141-8PubMedCrossRefGoogle Scholar
  108. [108]
    Jo N, et al. (2006) Inhibition of platelet-derived growth factor B signaling enhances the efficacy of anti-vascular endothelial growth factor therapy in multiple models of ocular neovascularization. American Journal of Pathology 168(6): 2036-53PubMedCrossRefGoogle Scholar
  109. [109]
    Rogers AH, et al. (2002) Optical coherence tomography findings following photodynamic therapy of choroidal neovascularization. American Journal of Ophthalmology 134(4): 566-76PubMedCrossRefGoogle Scholar
  110. [110]
    Schmidt-Erfurth U, et al. (2002) Histopathological changes following photodynamic therapy in human eyes. Archives of Ophthalmology 120(6): 835-44PubMedGoogle Scholar
  111. [111]
    Spaide RF, et al. (2003) Combined photodynamic therapy with verteporfin and intravitreal triamcinolone acetonide for choroidal neovascularization. Ophthalmology 110(8): 1517-25PubMedCrossRefGoogle Scholar
  112. [112]
    Spaide RF, et al. (2005) Photodynamic therapy with verteporfin combined with intravitreal injection of triamcinolone acetonide for choroidal neovascularization. Ophthalmology 112(2): 301-4PubMedCrossRefGoogle Scholar
  113. [113]
    Treatment of age-related macular degeneration with photodynamic therapy (TAP) Study Group (1999) Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: one-year results of 2 randomized clinical trials - TAP report. Arch Ophthalmol 117(10): 1329-45Google Scholar
  114. [114]
    Gillies MC, et al. (2004) Safety of an intravitreal injection of triamcinolone: results from a randomized clinical trial. Archives of Ophthalmology 122(3): 336-40PubMedCrossRefGoogle Scholar
  115. [115]
    Rechtman E, et al. (2004) Intravitreal triamcinolone with photodynamic therapy for subfoveal choroidal neovascularisation in age related macular degeneration. British Journal of Ophthalmology 88(3): 344-7PubMedCrossRefGoogle Scholar
  116. [116]
    Moshfeghi A, Puliafito C (2004) Combination verteporfin therapy and intravitreal triamcinolone n neovascular age-related macular degeneration. Meeting of the Retina Society. Baltimore, MD, USAGoogle Scholar
  117. [117]
    Roth D, Walsman S, Modi A, et al. (2004) Intravitreal triamcinolone combined with photodynamic therapy for exudative macular degeneration. Joint Meeting of the American Academy of Ophthalmology and European Society of Ophthalmology. New Orleans, LA, USAGoogle Scholar
  118. [118]
    Augustin A, Schmidt-Erfurth U (2004) PDT and triamcinolone for the treatment of occult CNV in AMD. in 27th Annual Macula Society Meeting. Las Vegas, NV, USAGoogle Scholar
  119. [119]
    El Matri L, Baklouti K, Mghaieth F, et al. (2004) Photodynamic therapy and intravitreal triamcinolone for exudative [sic] age related macular degeneration. Invest Ophthalmol Vis Sci 45(EAbstract): 3162Google Scholar
  120. [120]
    Johnson R, Yang S, McDonald HR, Ai E, Jumper JM (2004) Combined photodynamic therapy and intravitreal triamcinolone acetonide for AMD. Joint Meeting of the American Academy of Ophthalmology and European Society of Ophthalmology. New Orleans, LA, USAGoogle Scholar
  121. [121]
    Bhavsar A (2004) Combined verteporfin therapy and intravitreal triamcinolone in the treatment of minimally classic subfoveal CNV with or without RAP lesions. Joint Meeting of the American Academy of Ophthalmology and European Society of Ophthalmology. New Orleans, LA, USAGoogle Scholar
  122. [122]
    Spaide R, Sorenson J, Maranan L (2004) Combined photodynamic therapy with verteporfin and intravitreal triamcinolone for juxtafoveal and extrafoveal choroidal neovascularization. Joint Meeting of the American Academy of Ophthalmology and European Society of Ophthalmology. New Orleans, LA, USAGoogle Scholar
  123. [123]
    Chan WM, et al. (2006) Combined photodynamic therapy and intravitreal triamcinolone injection for the treatment of subfoveal choroidal neovascularisation in age related macular degeneration: a comparative study. British Journal of Ophthalmology 90(3): 337-41PubMedCrossRefGoogle Scholar
  124. [124]
    Ergun E, et al. (2006) Photodynamic therapy with verteporfin and intravitreal triamcinolone acetonide in the treatment of neovascular age-related macular degeneration. American Journal of Ophthalmology 142(1): 10-16PubMedCrossRefGoogle Scholar
  125. [125]
    Arias L, et al. (2006) Photodynamic therapy with intravitreal triamcinolone in predominantly classic choroidal neovascularization: one-year results of a randomized study. Ophthalmology 113(12): 2243-50PubMedCrossRefGoogle Scholar
  126. [126]
    Ruiz-Moreno JM, et al. (2007) Photodynamic therapy and highdose intravitreal triamcinolone to treat exudative age-related macular degeneration: 2-year outcome. Retina 27(4): 458-61PubMedCrossRefGoogle Scholar
  127. [127]
    Maberley D, et al. (2009) Photodynamic therapy and intravitreal triamcinolone for neovascular age-related macular degeneration: a randomized clinical trial. Ophthalmology 116(11): 2149-57.e1PubMedCrossRefGoogle Scholar
  128. [128]
    Eyetech-Pharma (2004) Division of Anti-inflammatory, Analgesic and Ophthalmic Drug Products Advisory Committee Meeting Briefing Package for Macugen 2004. [cited 2010 04/28]; Available from: http://www.fda.gov/ohrms/dockets/ac/04/briefing/2004-4053B1_02_FDA-Backgrounder.pdf
  129. [129]
    Antoszyk AN, et al. (2008) Ranibizumab combined with verteporfin photodynamic therapy in neovascular age-related macular degeneration (FOCUS): year 2 results. American Journal of Ophthalmology 145(5): 862-74PubMedCrossRefGoogle Scholar
  130. [130]
    Lazic R, et al. (2007) Verteporfin therapy and intravitreal bevacizumab combined and alone in choroidal neovascularization due to age-related macular degeneration. Ophthalmology 114(6): 1179-85PubMedCrossRefGoogle Scholar
  131. [131]
    Kaiser PK, et al. (2007) Verteporfin photodynamic therapy combined with intravitreal bevacizumab for neovascular agerelated macular degeneration. Ophthalmology 116(4): 747-55CrossRefGoogle Scholar
  132. [132]
    Kaiser PK (2010) Combination therapy with verteporfin and anti-VEGF agents in neovascular age-related macular degeneration: where do we stand? British Journal of Ophthalmology 94(2): 143-5PubMedCrossRefGoogle Scholar
  133. [133]
    QLT (2009) QLT Announces 12-month results from Novartis sponsored MONT BLANC Study evaluating standard-fluence VISUDYNE® combination therapy. [cited 2010 04/28]; Available from: http://www.qltinc.com/newsCenter/2009/090615.htm
  134. [134]
    Augustin AJ, et al. (2007) Triple therapy for choroidal neovascularization due to age-related macular degeneration: verteporfin PDT, bevacizumab, and dexamethasone. Retina 27(2): 133-40PubMedCrossRefGoogle Scholar
  135. [135]
    Yip PP, et al. (2009) Triple therapy for neovascular age-related macular degeneration using single-session photodynamic therapy combined with intravitreal bevacizumab and triamcinolone. British Journal of Ophthalmology 93(6): 754-8PubMedCrossRefGoogle Scholar
  136. [136]
    Ehmann D, et al. (2007) Triple therapy for neovascular age-related macular degeneration (verteporfin photodynamic therapy, intravitreal dexamethasone, and intravitreal bevacizumab). Canadian Journal of Ophthalmology 45(1): 36-40CrossRefGoogle Scholar
  137. [137]
    Bakri SJ, et al. (2009) Same-day triple therapy with photodynamic therapy, intravitreal dexamethasone, and bevacizumab in wet age-related macular degeneration. Retina 29(5): 573-8PubMedCrossRefGoogle Scholar
  138. [138]
    Ahmadieh H, et al. (2007) Single-session photodynamic therapy combined with intravitreal bevacizumab and triamcinolone for neovascular age-related macular degeneration. BMC Ophthalmology 7: 10PubMedCrossRefGoogle Scholar
  139. [139]
    Clinicaltrials.gov. (2010) Reduced Fluence Visudyne-Anti-VEGFDexamethasone In Combination for AMD Lesions (RADICAL). [cited 2010 04/28]; Available from: http://www.clinicaltrials.gov/ct2/show/NCT00492284
  140. [140]
    Verin V, et al. (2007) Endoluminal beta-radiation therapy for the prevention of coronary restenosis after balloon angioplasty. The Dose-Finding Study Group. New England Journal of Medicine 344(4): 243-9CrossRefGoogle Scholar
  141. [141]
    Kirwan JF, et al. (2003) Beta irradiation: new uses for an old treatment: a review. Eye 17(2): 207-15PubMedCrossRefGoogle Scholar
  142. [142]
    Wachsberger P, et al. (2003) Tumor response to ionizing radiation combined with antiangiogenesis or vascular targeting agents: exploring mechanisms of interaction. Clinical Cancer Research 9(6): 1957-71PubMedGoogle Scholar
  143. [143]
    Bischof M, et al. (2004) Triple combination of irradiation, chemotherapy (pemetrexed), and VEGFR inhibition (SU5416) in human endothelial and tumor cells. International Journal of Radiation Oncology, Biology, Physics 60(4): 1220-32PubMedCrossRefGoogle Scholar
  144. [144]
    Avila MP, et al. (2009) Twelve-month short-term safety and visual-acuity results from a multicentre prospective study of epiretinal strontium-90 brachytherapy with bevacizumab for the treatment of subfoveal choroidal neovascularisation secondary to age-related macular degeneration. British Journal of Ophthalmology 93(3): 305-9PubMedCrossRefGoogle Scholar
  145. [145]
    Dugel PU (2009) Radiation Therapy for Exudative AMD as an Operating Room Based Therapy, in Annual Meeting of the American Academy of Ophthalmology. San Francisco, CAGoogle Scholar
  146. [146]
    Brown DM, et al. (2006) Ranibizumab versus verteporfin for neovascular age-related macular degeneration. New England Journal of Medicine 355(14): 1432-44PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mark R. Barakat
    • 1
  • Nathan Steinle
    • 1
  • Peter K. Kaiser
    • 1
  1. 1.Cole Eye InstituteCleveland Clinic FoundationClevelandUSA

Personalised recommendations