Advertisement

Nahrungsergänzung

  • A. D. Meleth
  • Veena R. Raiji
  • Nupura Krishnadev
  • Emily Y. Chew

Zusammenfassung

Die altersabhängige Makuladegeneration (AMD) ist in den Industriestaaten die Hauptursache für Erblindung bei Erwachsenen nordeuropäischer Abstammung jenseits des 65. Lebensjahres. Bedingt durch den demographischen Wandel erwartet man in den USA einen dramatischen Prävalenzanstieg der AMD von 1,75 Millionen im Jahr 2000 auf 2,95 Millionen im Jahr 2020 [1]. Angesichts der großen und weiter zunehmenden Krankheitsbelastung für Familien und die Gesellschaft gewinnt die Identifikation beeinflussbarer Risikofaktoren und neuer Möglichkeiten der Präventivbehandlung zunehmend an Wichtigkeit.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Friedman DS, O‘Colmain BJ, Munoz B, et al. (2004) Prevalence of age-related macular degeneration in the United State (2007) Nutritional supplementation in age-related macular degeneration. Curr Opin Ophthalmol 18(3):220–223Google Scholar
  2. [2]
    Coleman H, Chew E (2007) Nutritional supplementation in age-related macular degeneration. Curr Opin Ophthalmol 18(3):220–223PubMedCrossRefGoogle Scholar
  3. [3]
    Evans JR (2006) Antioxidant vitamin and mineral supplements for slowing the progression of age-related macular degeneration. Cochrane Database Syst Rev (2):CD000254Google Scholar
  4. [4]
    Evans JR, Henshaw K (2000) Antioxidant vitamin and mineral supplementation for preventing age-related macular degeneration. Cochrane Database Syst Rev (2):CD000253Google Scholar
  5. [5]
    Evans JR, Henshaw K (2008) Antioxidant vitamin and mineral supplements for preventing age-related macular degeneration. Cochrane Database Syst Rev (1):CD000253Google Scholar
  6. [6]
    Johnson EJ (2010) Age-related macular degeneration and antioxidant vitamins: recent findings. Curr Opin Clin Nutr Metab Care 13(1):28–33PubMedCrossRefGoogle Scholar
  7. [7]
    Ding X, Patel M, Chan CC (2009) Molecular pathology of agerelated macular degeneration. Prog Retin Eye Res 28(1):1–18PubMedCrossRefGoogle Scholar
  8. [8]
    Ferris FL, Davis MD, Clemons TE, et al. (2005) A simplified severity scale for age-related macular degeneration: AREDS Report No. 18. Arch Ophthalmol 123(11):1570–1574PubMedCrossRefGoogle Scholar
  9. [9]
    Bressler NM, Bressler SB, Congdon NG, et al. (2003) Potential public health impact of Age-Related Eye Disease Study results: AREDS report no. 11. Arch Ophthalmol 121(11):1621–1624PubMedCrossRefGoogle Scholar
  10. [10]
    Borger PH, van Leeuwen R, Hulsman CA, et al. (2003) Is there a direct association between age-related eye diseases and mortality? The Rotterdam Study. Ophthalmology 110(7):1292–1296PubMedCrossRefGoogle Scholar
  11. [11]
    Clemons TE, Kurinij N, Sperduto RD (2004) Associations of mortality with ocular disorders and an intervention of high-dose antioxidants and zinc in the Age-Related Eye Disease Study: AREDS Report No. 13. Arch Ophthalmol 122(5):716–726PubMedCrossRefGoogle Scholar
  12. [12]
    Chew EY, Clemons T (2005) Vitamin E and the age-related eye disease study supplementation for age-related macular degeneration. Arch Ophthalmol 123(3):395–396PubMedCrossRefGoogle Scholar
  13. [13]
    Nebeling LC, Forman MR, Graubard BI, Snyder RA (1997) Changes in carotenoid intake in the United States: the 1987 and 1992 National Health Interview Surveys. J Am Diet Assoc 97(9):991–996PubMedCrossRefGoogle Scholar
  14. [14]
    Nebeling LC, Forman MR, Graubard BI, Snyder RA (1997) The impact of lifestyle characteristics on carotenoid intake in the United States: the 1987 National Health Interview Survey. Am J Public Health 87(2):268–271PubMedCrossRefGoogle Scholar
  15. [15]
    Sommerburg O, Keunen JE, Bird AC, van Kuijk FJ (1998) Fruits and vegetables that are sources for lutein and zeaxanthin: the macular pigment in human eyes. Br J Ophthalmol 82(8):907–910PubMedCrossRefGoogle Scholar
  16. [16]
    AREDS (2001) A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol 119(10):1417–1436Google Scholar
  17. [17]
    Teikari JM, Laatikainen L, Virtamo J, et al. (1998) Six-year supplementation with alpha-tocopherol and beta-carotene and agerelated maculopathy. Acta Ophthalmol Scand 76(2):224–229PubMedCrossRefGoogle Scholar
  18. [18]
    Tan JS, Wang JJ, Flood V, Rochtchina E, Smith W, Mitchell P (2008) Dietary antioxidants and the long-term incidence of age-related macular degeneration: the Blue Mountains Eye Study. Ophthalmology 115(2):334–341PubMedCrossRefGoogle Scholar
  19. [19]
    van Leeuwen R, Boekhoorn S, Vingerling JR, et al. (2005) Dietary intake of antioxidants and risk of age-related macular degeneration. JAMA 294(24):3101–3107PubMedCrossRefGoogle Scholar
  20. [20]
    Chiu CJ, Milton RC, Klein R, Gensler G, Taylor A (2009) Dietary compound score and risk of age-related macular degeneration in the age-related eye disease study. Ophthalmology 116(5):939–946PubMedCrossRefGoogle Scholar
  21. [21]
    Christen WG, Manson JE, Glynn RJ, et al. (2007) Beta carotene supplementation and age-related maculopathy in a randomized trial of US physicians. Arch Ophthalmol 125(3):333–339PubMedCrossRefGoogle Scholar
  22. [22]
    The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group (1994) The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers.. N Engl J Med 330(15):1029–1035CrossRefGoogle Scholar
  23. [23]
    Omenn GS, Goodman GE, Thornquist MD, et al. (1996) Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med 334(18):1150–1155PubMedCrossRefGoogle Scholar
  24. [24]
    Hennekens CH, Buring JE, Manson JE, et al. (1996) Lack of effect of long-term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease. N Engl J Med 334(18):1145–1149PubMedCrossRefGoogle Scholar
  25. [25]
    AREDS2 Manual of Procedures www.areds2.org
  26. [26]
    Loane E, Kelliher C, Beatty S, Nolan JM (2008) The rationale and evidence base for a protective role of macular pigment in agerelated maculopathy. Br J Ophthalmol 92(9):1163–1168PubMedCrossRefGoogle Scholar
  27. [27]
    Snodderly DM, Auran JD, Delori FC (1984) The macular pigment. II. Spatial distribution in primate retinas. Invest Ophthalmol Vis Sci 25(6):674–685Google Scholar
  28. [28]
    Snodderly DM, Brown PK, Delori FC, Auran JD (1984) The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas. Invest Ophthalmol Vis Sci 25(6):660–673PubMedGoogle Scholar
  29. [29]
    Nolan JM, Stack J, O OD, Loane E, Beatty S (2007) Risk factors for age-related maculopathy are associated with a relative lack of macular pigment. Exp Eye Res 84(1):61–74PubMedCrossRefGoogle Scholar
  30. [30]
    Trieschmann M, Beatty S, Nolan JM, et al. (2007) Changes in macular pigment optical density and serum concentrations of its constituent carotenoids following supplemental lutein and zeaxanthin: the LUNA study. Exp Eye Res 84(4):718–728PubMedCrossRefGoogle Scholar
  31. [31]
    Schalch W, Cohn W, Barker FM, et al. (2007) Xanthophyll accumulation in the human retina during supplementation with lutein or zeaxanthin – the LUXEA (LUtein Xanthophyll Eye Accumulation) study. Arch Biochem Biophys 458(2):128–135PubMedCrossRefGoogle Scholar
  32. [32]
    Rosenthal JM, Kim J, de Monasterio F, et al. (2006) Dose-ranging study of lutein supplementation in persons aged 60 years or older. Invest Ophthalmol Vis Sci 47(12):5227–5233PubMedCrossRefGoogle Scholar
  33. [33]
    SanGiovanni JP, Chew EY, Clemons TE, et al. 2007 () The relationship of dietary carotenoid and vitamin A, E, and C intake with age-related macular degeneration in a case-control study: AREDS Report No. 22. Arch Ophthalmol 125(9):1225–1232PubMedCrossRefGoogle Scholar
  34. [34]
    Tan JS, Wang JJ, Flood V, Mitchell P (2009) Dietary fatty acids and the 10-year incidence of age-related macular degeneration: the Blue Mountains Eye Study. Arch Ophthalmol 127(5):656–665PubMedCrossRefGoogle Scholar
  35. [35]
    Cho E, Hankinson SE, Rosner B, Willett WC, Colditz GA (2008) Prospective study of lutein/zeaxanthin intake and risk of age-related macular degeneration. Am J Clin Nutr 87(6):1837–1843PubMedGoogle Scholar
  36. [36]
    Moeller SM, Parekh N, Tinker L, et al. (2006) Associations between intermediate age-related macular degeneration and lutein and zeaxanthin in the Carotenoids in Age-related Eye Disease Study (CAREDS): ancillary study of the Women‘s Health Initiative. Arch Ophthalmol 124(8):1151–1162PubMedCrossRefGoogle Scholar
  37. [37]
    Delcourt C, Carriere I, Delage M, Barberger-Gateau P, Schalch W (2006) Plasma lutein and zeaxanthin and other carotenoids as modifiable risk factors for age-related maculopathy and cataract: the POLA Study. Invest Ophthalmol Vis Sci 47(6):2329–2335PubMedCrossRefGoogle Scholar
  38. [38]
    Seddon JM, Ajani UA, Sperduto RD, et al. (1994) Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. Eye Disease Case-Control Study Group. JAMA 272(18):1413–1420PubMedCrossRefGoogle Scholar
  39. [39]
    Trumbo PR, Ellwood KC (2006) Lutein and zeaxanthin intakes and risk of age-related macular degeneration and cataracts: an evaluation using the Food and Drug Administration‘s evidence-based review system for health claims. Am J Clin Nutr 84(5):971–974PubMedGoogle Scholar
  40. [40]
    SanGiovanni JP, Chew EY( 2005) The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog Retin Eye Res 24(1):87–138PubMedCrossRefGoogle Scholar
  41. [41]
    Bannenberg G, Arita M, Serhan CN (2007) Endogenous receptor agonists: resolving inflammation. Scientific World J 7:1440–1462Google Scholar
  42. [42]
    Bazan NG (2006) Cell survival matters: docosahexaenoic acid signaling, neuroprotection and photoreceptors. Trends Neurosci 29(5):263–271PubMedCrossRefGoogle Scholar
  43. [43]
    Bazan NG (2008) Neurotrophins induce neuroprotective signaling in the retinal pigment epithelial cell by activating the synthesis of the anti-inflammatory and anti–apoptotic neuroprotectin D1. Adv Exp Med Bio 613:39–44CrossRefGoogle Scholar
  44. [44]
    Serhan CN (2009) Systems approach to inflammation resolution: identification of novel anti-inflammatory and pro-resolving mediators. J Thromb Haemost 7 Suppl 1:44–48PubMedCrossRefGoogle Scholar
  45. [45]
    Serhan CN, Chiang N, Van Dyke TE (2008) Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 8(5):349–361PubMedCrossRefGoogle Scholar
  46. [46]
    Weylandt KH, Kang JX (2005) Rethinking lipid mediators. Lancet 366(9486):618–620PubMedCrossRefGoogle Scholar
  47. [47]
    Mukherjee PK, Marcheselli VL, Serhan CN, Bazan NG (2004) Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci USA 101(22):8491–8496PubMedCrossRefGoogle Scholar
  48. [48]
    Sangiovanni JP, Agron E, Meleth AD, et al. (2009) {omega}-3 Long-chain polyunsaturated fatty acid intake and 12-y incidence of neovascular age-related macular degeneration and central geographic atrophy: AREDS report 30, a prospective cohort study from the Age-Related Eye Disease Study. Am J Clin Nutr 90(6):1601–1607PubMedCrossRefGoogle Scholar
  49. [49]
    Augood C, Chakravarthy U, Young I, et al. (2008) Oily fish consumption, dietary docosahexaenoic acid and eicosapentaenoic acid intakes, and associations with neovascular age-related macular degeneration. Am J Clin Nutr 88(2):398–406PubMedGoogle Scholar
  50. [50]
    Chong EW, Kreis AJ, Wong TY, Simpson JA, Guymer RH (2008) Dietary omega-3 fatty acid and fish intake in the primary prevention of age-related macular degeneration: a systematic review and meta-analysis. Arch Ophthalmol 126(6):826–833PubMedCrossRefGoogle Scholar
  51. [51]
    Seddon JM, George S, Rosner B (2006) Cigarette smoking, fish consumption, omega-3 fatty acid intake, and associations with age-related macular degeneration: the US Twin Study of Age-Related Macular Degeneration. Arch Ophthalmol 124(7):995–1001PubMedCrossRefGoogle Scholar
  52. [52]
    Huang LL, Coleman HR, Kim J, et al. (2008) Oral supplementation of lutein/zeaxanthin and omega-3 long chain polyunsaturated fatty acids in persons aged 60 years or older, with or without AMD. Invest Ophthalmol Vis Sci 49(9):3864–3869PubMedCrossRefGoogle Scholar
  53. [53]
    Chiu CJ, Klein R, Milton RC, Gensler G, Taylor A (2009) Does eating particular diets alter the risk of age-related macular degeneration in users of the Age-Related Eye Disease Study supplements? Br J Ophthalmol 93(9):1241–1246PubMedCrossRefGoogle Scholar
  54. [54]
    SanGiovanni JP, Agron E, Clemons TE, Chew EY (2009) Omega-3 long-chain polyunsaturated fatty acid intake inversely associated with 12-year progression to advanced age-related macular degeneration. Arch Ophthalmol 127(1):110–112PubMedCrossRefGoogle Scholar
  55. [55]
    SanGiovanni JP, Chew EY, Clemons TE, et al. (2007) The relationship of dietary lipid intake and age-related macular degeneration in a case-control study: AREDS Report No. 20. Arch Ophthalmol 125(5):671–679PubMedCrossRefGoogle Scholar
  56. [56]
    Chong EW, Robman LD, Simpson JA, et al. (2009) Fat consumption and its association with age-related macular degeneration. Arch Ophthalmol 127(5):674–680PubMedCrossRefGoogle Scholar
  57. [57]
    Heuberger RA, Mares-Perlman JA, Klein R, Klein BE, Millen AE, Palta M (2001) Relationship of dietary fat to age-related maculopathy in the Third National Health and Nutrition Examination Survey. Arch Ophthalmol 119(12):1833–1838PubMedGoogle Scholar
  58. [58]
    Katz ML, Robison WG, Jr. (1987) Light and aging effects on vitamin E in the retina and retinal pigment epithelium. Vision Res 27(11):1875–1879PubMedCrossRefGoogle Scholar
  59. [59]
    Supplements OoD. Vitamin E. http://dietary-supplements.info.nih.gov/factsheets/[60] Taylor HR, Tikellis G, Robman LD, McCarty CA, McNeil JJ (2002) Vitamin E supplementation and macular degeneration: randomised controlled trial. BMJ 325(7354):11Google Scholar
  60. [61]
    Christen WG, Ajani UA, Glynn RJ, et al. (1999) Prospective cohort study of antioxidant vitamin supplement use and the risk of agerelated maculopathy. Am J Epidemiol 149(5):476–484PubMedGoogle Scholar
  61. [62]
    Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C (2007) Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and metaanalysis. JAMA 297(8):842–857PubMedCrossRefGoogle Scholar
  62. [63]
    Hosoya K, Nakamura G, Akanuma S, Tomi M, Tachikawa M (2008) Dehydroascorbic acid uptake and intracellular ascorbic acid accumulation in cultured Muller glial cells (TR-MUL). Neurochem Int 52(7):1351–1357PubMedCrossRefGoogle Scholar
  63. [64]
  64. [65]
    Friedman PA, Zeidel ML (1999) Victory at C. Nat Med 5(6):620–621PubMedCrossRefGoogle Scholar
  65. [66]
    Stoyanovsky DA, Goldman R, Darrow RM, Organisciak DT, Kagan VE (1995) Endogenous ascorbate regenerates vitamin E in the retina directly and in combination with exogenous dihydrolipoic acid. Curr Eye Res 14(3):181–189PubMedCrossRefGoogle Scholar
  66. [67]
    Grahn BH, Paterson PG, Gottschall-Pass KT, Zhang Z (2001) Zinc and the eye. J Am Coll Nutr 20(2 Suppl):106–118PubMedGoogle Scholar
  67. [68]
  68. [69]
    Wills NK, Ramanujam VM, Kalariya N, Lewis JR, van Kuijk FJ (2008) Copper and zinc distribution in the human retina: relationship to cadmium accumulation, age, and gender. Exp Eye Res 87(2):80–88PubMedCrossRefGoogle Scholar
  69. [70]
    Karcioglu ZA (1982) Zinc in the eye. Surv Ophthalmol 27(2):114–122PubMedCrossRefGoogle Scholar
  70. [71]
    Cunningham-Rundles S, Cunningham-Rundles C, Dupont B, Good RA (1980) Zinc-induced activation of human B lymphocytes. Clin Immunol Immunopathol 16(1):115–122PubMedCrossRefGoogle Scholar
  71. [72]
    Hurley LS, Swenerton H (1966) Congenital malformations resulting from zinc deficiency in rats. Proc Soc Exp Biol Med 123(3):692–696PubMedGoogle Scholar
  72. [73]
    Morrison SA, Russell RM, Carney EA, Oaks EV (1978) Zinc deficiency: a cause of abnormal dark adaptation in cirrhotics. Am J Clin Nutr 31(2):276–281PubMedGoogle Scholar
  73. [74]
    Prasad AS (1991) Discovery of human zinc deficiency and studies in an experimental human model. Am J Clin Nutr 53(2):403–412PubMedGoogle Scholar
  74. [75]
    Tate DJ, Miceli MV, Newsome DA, Alcock NW, Oliver PD (1995) Influence of zinc on selected cellular functions of cultured human retinal pigment epithelium. Curr Eye Res 14(10):897–903PubMedCrossRefGoogle Scholar
  75. [76]
    Olin KL, Golub MS, Gershwin ME, Hendrickx AG, Lonnerdal B, Keen CL (1995) Extracellular superoxide dismutase activity is affected by dietary zinc intake in nonhuman primate and rodent models. Am J Clin Nutr 61(6):1263–1267PubMedGoogle Scholar
  76. [77]
    Newsome DA, Swartz M, Leone NC, Elston RC, Miller E (1988) Oral zinc in macular degeneration. Arch Ophthalmol 106(2):192–198PubMedGoogle Scholar
  77. [78]
    Newsome DA (2008) A randomized, prospective, placebo-controlled clinical trial of a novel zinc-monocysteine compound in age-related macular degeneration. Curr Eye Res 33(7):591–598PubMedCrossRefGoogle Scholar
  78. [79]
    VandenLangenberg GM, Mares-Perlman JA, Klein R, Klein BE, Brady WE, Palta M (1998) Associations between antioxidant and zinc intake and the 5-year incidence of early age-related maculopathy in the Beaver Dam Eye Study. Am J Epidemiol 148(2):204–214PubMedGoogle Scholar
  79. [80]
    Stur M, Tittl M, Reitner A, Meisinger V (1996) Oral zinc and the second eye in age-related macular degeneration. Invest Ophthalmol Vis Sci 37(7):1225–1235PubMedGoogle Scholar
  80. [81]
    AREDS (2002) The effect of five-year zinc supplementation on serum zinc, serum cholesterol and hematocrit in persons randomly assigned to treatment group in the age-related eye disease study: AREDS Report No. 7. J Nutr 132(4):697–702Google Scholar
  81. [82]
    Klein ML, Francis PJ, Rosner B, et al. (2008) CFH and LOC387715/ARMS2 genotypes and treatment with antioxidants and zinc for age-related macular degeneration. Ophthalmology 115(6):1019–1025PubMedCrossRefGoogle Scholar
  82. [83]
  83. [84]
    Axer-Siegel R, Bourla D, Ehrlich R, et al. (2004) Association of neovascular age-related macular degeneration and hyperhomocysteinemia. Am J Ophthalmol 137(1):84–89PubMedCrossRefGoogle Scholar
  84. [85]
    Heuberger RA, Fisher AI, Jacques PF, et al. (2002) Relation of blood homocysteine and its nutritional determinants to agerelated maculopathy in the third National Health and Nutrition Examination Survey. Am J Clin Nutr 76(4):897–902PubMedGoogle Scholar
  85. [86]
    Nowak M, Swietochowska E, Wielkoszynski T, et al. (2005) Homocysteine, vitamin B12, and folic acid in age-related macular degeneration. Eur J Ophthalmol 15(6):764–767PubMedGoogle Scholar
  86. [87]
    Rochtchina E, Wang JJ, Flood VM, Mitchell P (2007) Elevated serum homocysteine, low serum vitamin B12, folate, and agerelated macular degeneration: the Blue Mountains Eye Study. Am J Ophthalmol 143(2):344–346PubMedCrossRefGoogle Scholar
  87. [88]
    Woo KS, Chook P, Lolin YI, Sanderson JE, Metreweli C, Celermajer DS (1999) Folic acid improves arterial endothelial function in adults with hyperhomocystinemia. J Am Coll Cardiol 34(7):2002–2006PubMedCrossRefGoogle Scholar
  88. [89]
    Moore P, El-sherbeny A, Roon P, Schoenlein PV, Ganapathy V, Smith SB (2001) Apoptotic cell death in the mouse retinal ganglion cell layer is induced in vivo by the excitatory amino acid homocysteine. Exp Eye Res 73(1):45–57PubMedCrossRefGoogle Scholar
  89. [90]
    van Leeuwen R, Ikram MK, Vingerling JR, Witteman JC, Hofman A, de Jong PT (2003) Blood pressure, atherosclerosis, and the incidence of age-related maculopathy: the Rotterdam Study. Invest Ophthalmol Vis Sci 44(9):3771–3777PubMedCrossRefGoogle Scholar
  90. [91]
    Ramrattan RS, Van Der Schaft TL, Mooy CM, de Bruijn WC, Mulder PG, de Jong PT (1994) Morphometric analysis of Bruch‘s membrane, the choriocapillaris, and the choroid in aging. Invest Ophthalmol Vis Sci 35(6):2857–2864PubMedGoogle Scholar
  91. [92]
    Vingerling JR, Dielemans I, Bots ML, Hofman A, Grobbee DE, de Jong PT (1995) Age-related macular degeneration is associated with atherosclerosis. The Rotterdam Study. Am J Epidemiol 142(4):404–409PubMedGoogle Scholar
  92. [93]
    Christen WG, Glynn RJ, Chew EY, Albert CM, Manson JE (2009) Folic acid, pyridoxine, and cyanocobalamin combination treatment and age-related macular degeneration in women: the Women‘s Antioxidant and Folic Acid Cardiovascular Study. Arch Intern Med 169(4):335–341PubMedCrossRefGoogle Scholar
  93. [94]
    Hayden MR, Tyagi SC (2004) Homocysteine and reactive oxygen species in metabolic syndrome, type 2 diabetes mellitus, and atheroscleropathy: the pleiotropic effects of folate supplementation. Nutr J 3:4PubMedCrossRefGoogle Scholar
  94. [95]
    Homocysteine Lowering Trialists’ Collaboration (2005) Dosedependent effects of folic acid on blood concentrations of homocysteine: a meta-analysis of the randomized trials. Am J Clin Nutr 82(4):806–812Google Scholar
  95. [96]
    Doshi SN, McDowell IF, Moat SJ, et al. (2002) Folic acid improves endothelial function in coronary artery disease via mechanisms largely independent of homocysteine lowering. Circulation 105(1):22–26PubMedCrossRefGoogle Scholar
  96. [97]
    Moat SJ, Lang D, McDowell IF, et al. (2004) Folate, homocysteine, endothelial function and cardiovascular disease. J Nutr Biochem 15(2):64–79PubMedCrossRefGoogle Scholar
  97. [98]
    Verhaar MC, Wever RM, Kastelein JJ, van Dam T, Koomans HA, Rabelink TJ (1998) 5-methyltetrahydrofolate, the active form of folic acid, restores endothelial function in familial hypercholesterolemia. Circulation 97(3):237–241PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • A. D. Meleth
    • 1
  • Veena R. Raiji
    • 2
  • Nupura Krishnadev
    • 1
  • Emily Y. Chew
    • 1
  1. 1.National Eye InstituteNational Institutes of HealthBethesdaUSA
  2. 2.Department of OphthalmologyGeorge Washington UniversityWashingtonUSA

Personalised recommendations