Advertisement

Mikroperimetrie

  • Edoardo Midena
  • Elisabetta Pilotto

Zusammenfassung

Das Endstadium einer fortgeschrittenen altersabhängigen Makuladegeneration (AMD) kann einen irreversiblen und schweren Sehverlust darstellen. Das Fortschreiten der Sehverschlechterung und die Quantifizierung der finalen Restfunktion wird derzeit mit Hilfe diagnostischer Tests bestimmt, die auf den physiologischen und mathematischen Gesetzmäßigkeiten der Psychophysik basieren [18]. Der bekannteste dieser Tests ist die Messung der Sehschärfe: ein klassischer psychophysischer Test.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Bearelly S, Chau FY, Koreishi A et al. (2009) Spectral Domain optical cohenrence tomography imaging of geographic atrophy margins. Ophtahlmology 116: 1762–1769CrossRefGoogle Scholar
  2. [2]
    Bolz M, Simader C, Ritter M et al. (2010) Morphological and functional analysis of the loading regimen with intravitreal ranibizumab in neovascular age-related maculare degeneration. Br J Ophthalmol 94: 185–189PubMedCrossRefGoogle Scholar
  3. [3]
    Chieh JJ, Stinnett SS, Toth CA (2008) Central and pericentral retinal sensitivity after macular translocation surgery. Retina 28: 1522–1529PubMedCrossRefGoogle Scholar
  4. [4]
    Cohen Sy, Lamarque F, Saucet JC, et al. (2003) Filling-in phenomenon in patients with age-related macular degeneration: differences regarding uni-or bilaterality of central scotoma. Graefes Arch Clin Exp Ophthalmol 241: 785–791PubMedCrossRefGoogle Scholar
  5. [5]
    Doris N, Hart PM, Chakravarthy U, et al. (2001) Relation between macular morphology and visual function in patients with choroidal neovascularization of age related macular degeneration. Br J Ophthalmol 85: 184–188PubMedCrossRefGoogle Scholar
  6. [6]
    Ergun E, Maar N, Radner W, et al. (2003) Scotoma size and reading speed in patients with subfoveal occult choroidal neovascularisation in age-related macular degeneration. Ophthalmology 110: 65–69PubMedCrossRefGoogle Scholar
  7. [7]
    Fujii GY, de Juan E, Sunness JS et al. (2002) Patient selection for macular translocation surgery using the scanning laser ophthalmoscope. Ophthalmology 109: 1737–1744PubMedCrossRefGoogle Scholar
  8. [8]
    Fujii Gy, De Juan E Jr, Humayun MS, et al. (2003) Characteristics of visual loss by scanning laser opthalmoscope microperimetry in eyes with subfoveal choroidal neovascularization secondary to age-related macular degeneration. Am J Ophthalmol 136: 1067–1078PubMedCrossRefGoogle Scholar
  9. [9]
    Guez Je, Le Gargasson JF, Rigaudiere F, et al. (1993) Is there a systematic location for the pseudofovea in patients with central scotoma? Vision Res 33: 1271–1279PubMedCrossRefGoogle Scholar
  10. [10]
    Holz FG, Bellman C, Staudt S, et al. (2001) Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration. Invest Ophthalmol Vis Sci 42: 1051–1056PubMedGoogle Scholar
  11. [11]
    Johnson PT, Brown MN, Pulliam BC et al. (2005) Synaptic pathology, altered gene expression, and degeneration in photoreceptors impacted by drusen. Invest Ophthalmol Vis Sci 46:4788–4795PubMedCrossRefGoogle Scholar
  12. [12]
    Loewenstein A, Sunness SS, Bressler NM, et al. (1998) Scanning laser ophthalmoscope fundus perimetry after surgery for choroidal neovascularization. Am J Ophthalmol 125: 657–665PubMedCrossRefGoogle Scholar
  13. [13]
    Midena E, Convento E, Radin PP et al. (2007) Macular automatic fundus perimetry threshold versus standard perimetry threshold. Europ Journal Ophthalmol 17: 65–68Google Scholar
  14. [14]
    Midena E, Radin PP, Pilotto E, et al. (2004) Fixation pattern and macular sensitivity in eyes with subfoveal choroidal neovascularization secondary to age-related macular degeneration. A microperimetry study. Sem Ophthalmol 19: 55–61CrossRefGoogle Scholar
  15. [15]
    Midena E, Radin PP, Convento E (2007) Liquid crystal display microperimetry In: Midena E, editor. Perimetry and the Fundus: An Introduction to Microperimetry. Slack incorporated. Thorofare, NJ, 15–25Google Scholar
  16. [16]
    Midena E, Vujosevic S, Cavarzeran F, Microperimetry Study Group (2010) Normal values for fundus perimetry with the microperimeter MP1. Ophthalmology 117(8):1571–1576PubMedCrossRefGoogle Scholar
  17. [17]
    Midena E, Vujosevic S, Convento et al. (2007) Microperimetry and fundus autofluorescence in patients with early age-related macular degeneration. Br J Ophthalmol 91:499–503CrossRefGoogle Scholar
  18. [18]
    Neelam K, Nolan J, Chakravarthy U (2009) Psychophysical function in age-related maculopathy. Surv Ophthalmol 54:167–210PubMedCrossRefGoogle Scholar
  19. [19]
    Parravano MC, Oddone F, Tedeschi M, et al. (2009) Retinal functional changes measured by microperimetry in neovascular agerelated macular degeneration patients treated with ranibizumab. Retina 29:329–334PubMedCrossRefGoogle Scholar
  20. [20]
    Parravano MC, Oddone F, Tedeschi M et al. (2009) Retinal functional changes measured by microperimetry in neovascular agerelated macular degeneration patients treated with ranibizumab. Retina 29(3):329–334PubMedCrossRefGoogle Scholar
  21. [21]
    Pilotto E, Midena E (2007) Scanning Laser Microperimetry. In: Midena E (ed) Perimetry and the Fundus: An Introduction to Microperimetry. Slack Incorporated. Thorofare, NJ, 7–12Google Scholar
  22. [22]
    Pilotto E, Vujosevic S, Grigic AV et al. (2010) Retinal function in patients with serpiginous choroiditis: a microperimetric study. Graefes Arch Clin Exp Ophthalmol 248:1331–1337PubMedCrossRefGoogle Scholar
  23. [23]
    Prager F, Michels S, Simader C et al. (2008) Changes in retinal sensitivity in patients with neovascular age-related macular degeneration after systemic bevacizumab (Avastin) therapy. Retina 28:682–688PubMedCrossRefGoogle Scholar
  24. [24]
    Rohrschneider K, Springer C, Bultmann S et al. (2005) Microperimetry – comparison between the micro perimeter 1 and scanning laser ophthalmoscope – fundus perimetry. Am J Ophthalmol 139:125–134PubMedCrossRefGoogle Scholar
  25. [25]
    Schmidt-Erfurth UM, Elser H, Terai N et al. (2004) Effects of verteporfin therapy on central visual field function. Ophthalmology 111:931–939PubMedCrossRefGoogle Scholar
  26. [26]
    Schmitz-Valckenberg S, Bültmann S, Dreyhaupt J et al. (2004) Fundus autofluorescence and fundus perimetry in the junctional zone of geographic atrophy in patients with age-related macular degeneration. Invest Ophthalmol Vis Sci 45:4470–4476PubMedCrossRefGoogle Scholar
  27. [27]
    Schmitz-Valckenberg S, Fleckenstein M, Helb et al. (2009) In vivo imaging of foveal sparing in geographic atrophy secondary to age-related macular degeneration. Invest Ophthalmol Vis Sci 50:3915–3921PubMedCrossRefGoogle Scholar
  28. [28]
    Schmitz-Valckenberg S, Fleckenstein M, Scholl HPN et al. (2009) Fundus autofluorescence and progression of age-related macular degeneration. Surv Ophthalmol 54:96–117PubMedCrossRefGoogle Scholar
  29. [29]
    Scholl HP, Bellman C DS, Bird AC et al. (2004) Photopic and scotopic fine matrix mapping of retinal areas of increased fundus autofluorescence in patients with age-related macular degeneration. Invest Ophthalmol Vis Sci 45:574–583PubMedCrossRefGoogle Scholar
  30. [30]
    Schuman SG, Koreishi AF, Farsiu S et al. (2009) Photoreceptor layer thinning over drusen in eyes with age-related macular degeneration imaged in vivo with Spectral-Domain optical coherence tomography. Ophthalmology 116:488–496PubMedCrossRefGoogle Scholar
  31. [31]
    Scilley K, Jackson GR, Cideciyan AV et al. (2002) Early age-related maculopathy and self-reported visual difficulty in daily life. Ophthalmology 109:1235–1242PubMedCrossRefGoogle Scholar
  32. [32]
    Shiraga F (2007) Neovascular age-related macular degeneration: medical treatment. In: Midena E, editor. Perimetry and the Fundus: An Introduction to Microperimetry. Slack incorporated. Thorofare, NJ, 7–12Google Scholar
  33. [33]
    Squirrel DM, Mawer NP, Mody Ch et al. 2010 () Visual outcome after intravitreal ranibizumab for wet age-related macular degeneration. A comparison between best-corrected visual acuity and microperimetry. Retina 30:436–442CrossRefGoogle Scholar
  34. [34]
    Sunness JS, Applegate CA (2005) Long-term follow-up of fixations patterns in eyes with central scotoma from geographic atrophy associated with age-related macular degeneration. Am J Ophthalmol 140:1085–1093PubMedCrossRefGoogle Scholar
  35. [35]
    Sunness JS, Margalit E, Srikurnaran D, et al. (2007) The long-term natural history of geographic atrophy from age-related macular degeneration. Ophthalmology 114:271–277PubMedCrossRefGoogle Scholar
  36. [36]
    Vujosevic S, Midena E, Pilotto E et al. (2006) Diabetic macular edema: correlation between microperimetry and Optical Coherence Tomography findings. Invest Ophthalmol Vis Sci 47:3044–3051PubMedCrossRefGoogle Scholar
  37. [37]
    Weingessel B, Sacu S, Vecsei-Marlovits PV et al. (2009) Interexaminer and intraexaminer reliability of the microperimeter MP-1. Eye 23:1052–1058PubMedCrossRefGoogle Scholar
  38. [38]
    Pilotto E, Vujosevic S, Melis R, et al. (2010) Short wavelength fundus autofluorescence versus near-infrared fundus autofluorescence, with microperimetric correspondence, in patients with geographic atrophy due to age-related macular degeneration. Br J Ophthalmol [Epub ahead of print]Google Scholar
  39. [39]
    Bellmann C, Feely M, Crossland MD, Kabanarou SA, Rubin GS (2004) Fixation stability using central and pericentral fixation targets in patients with age-related macular degeneration. Ophthalmology 111: 2265–70PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Edoardo Midena
    • 1
  • Elisabetta Pilotto
    • 1
  1. 1.Department of OphthalmologyUniversity of PadovaPaduaItalien

Personalised recommendations