Advertisement

Optische Kohärenztomographie

  • Sebastian Wolf

Zusammenfassung

Fortschritte in der bildgebenden Diagnostik haben zu einem besseren Verständnis der altersabhängigen Makuladegeneration (AMD) geführt. Aktuell ist die Fluoreszein- Angiographie der Goldstandard zur Darstellung von pathologischen Veränderungen, für die Therapiekontrolle und die Definition der verschiedenen Typen der exsudativen AMD. In den letzten Jahren hat jedoch die optische Kohärenztomographie (OCT) die Bildgebung in der Ophthalmologie revolutioniert. Die Einführung des OCT 1991 [13, 16, 25] und seine Anwendung in der klinischen Routine seit 1995 [1, 2, 4, 7, 8, 9, 11, 23, 35, 36] hat unser Verständnis verschiedener Netzhauterkrankungen verbessert. Die Einführung des Spectral-Domain-OCT (SD-OCT) [20, 32] hat zu einer erheblichen Verbesserung der Bildqualität geführt. Hierzu tragen die erheblich höhere Scangeschwindigkeiten und die bessere Bildverarbeitung bei. Durch diese Verbesserungen der Technik ist die klinische Bedeutung des OCT dramatisch angestiegen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Arvas S, Akar S, Yolar M, Yetik H, Kizilkaya M, Ozkan S (2002) Optical coherence tomography and angiography in patients with angioid streaks. Eur J Ophthalmol 12(6):473–481PubMedGoogle Scholar
  2. [2]
    Barbazetto I, Burdan A, Bressler NM, Bressler SB, Haynes L, Kapetanios AD, Lukas J, Olsen K, Potter M, Reaves A, Rosenfeld P, Schachat AP, Strong HA, Wenkenstern A (2003) Photodynamic therapy of subfoveal choroidal neovascularization with verteporfin: fluorescein angiographic guidelines for evaluation and treatment – TAP and VIP report No. 2. Arch Ophthalmol 121(9):1253–68PubMedCrossRefGoogle Scholar
  3. [3]
    Bressler NM, Silva JC, Bressler SB, Fine SL, Green WR (1994) Clinicopathologic correlation of drusen and retinal pigment epithelial abnormalities in age-related macular degeneration. Retina 14:130–142PubMedCrossRefGoogle Scholar
  4. [4]
    Brinkmann CK, Wolf S, Wolf-Schnurrbusch UE (2008) Multimodal imaging in macular diagnostics: combined OCT-SLO improves therapeutical monitoring. Graefes Arch Clin Exp Ophthalmol 246(1):9–16PubMedCrossRefGoogle Scholar
  5. [5]
    Brown DM, Kaiser PK, Michels M, Soubrane G, Heier JS, Kim RY, Sy JP, Schneider S (2006) Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med 355(14):1432–44PubMedCrossRefGoogle Scholar
  6. [6]
    Brown DM, Michels M, Kaiser PK, Heier JS, Sy JP, Ianchulev T (2009) Ranibizumab versus verteporfin photodynamic therapy for neovascular age-related macular degeneration: Two-year results of the ANCHOR study. Ophthalmology 116(1):57–65PubMedCrossRefGoogle Scholar
  7. [7]
    Brown JC, Solomon SD, Bressler SB, Schachat AP, DiBernardo C, Bressler NM (2004) Detection of diabetic foveal edema: contact lens biomicroscopy compared with optical coherence tomography. Arch Ophthalmol 122(3):330–5PubMedCrossRefGoogle Scholar
  8. [8]
    Chang LK, Koizumi H, Spaide RF (2008) Disruption of the photoreceptor inner segment-outer segment junction in eyes with macular holes. Retina 28(7):969–75PubMedCrossRefGoogle Scholar
  9. [9]
    de Bruin DM, Burnes D, Loewenstein J, Chen Y, Chang S, Chen T, Esmaili D, de Boer JF (2008) In-vivo three-dimensional imaging of neovascular age related macular degeneration using optical frequency domain imaging at 1050 nm. Invest Ophthalmol Vis Sci 49(10):4545–52PubMedCrossRefGoogle Scholar
  10. [10]
    Drexler W, Sattmann H, Hermann B, Ko TH, Stur M, Unterhuber A, Scholda C, Findl O, Wirtitsch M, Fujimoto JG, Fercher AF (2003) Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography. Arch Ophthalmol 121(5):695–706PubMedCrossRefGoogle Scholar
  11. [11]
    Fleckenstein M, Charbel Issa P, Helb HM, Schmitz-Valckenberg S, Finger RP, Scholl HP, Loeffler KU, Holz FG (2008) High resolution Spectral Domain-OCT imaging in Geographic Atrophy associated with Age-related Macular Degeneration. Invest Ophthalmol Vis Sci 49(9):4137–44PubMedCrossRefGoogle Scholar
  12. [12]
    Green WR, Key SN (1977) Senile macular degeneration: a histopathologic study .Trans Am Ophthalmol Soc 75:180–254PubMedGoogle Scholar
  13. [13]
    Hee MR, Puliafito, C., Carlton W., Duker, J., Reichel, E., Rutledge, B., Schuman, J., Swanson, E., Fujimoto, J. (1995) Quantitative Assessment of Macular Edema with Optical Coherence Tomography Arch. Ophthalmol 113(8/95):1019–1029Google Scholar
  14. [14]
    Holz F, Wolfensberger T, Piquet B, Gross-Jendroska M, Wells J, Minassian D, Chisholm I, Bird A (1994) Bilateral macular drusen in age-related macular degeneration. Ophthalmology 101:1522–1528PubMedGoogle Scholar
  15. [15]
    Holz FG, Bellman C, Staudt S, Schutt F, Volcker HE (2001) Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration. Invest Ophthalmol Vis Sci 42(5):1051–6PubMedGoogle Scholar
  16. [16]
    Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, et al. (1991) Optical coherence tomography. Science 254(5035):1178–81PubMedCrossRefGoogle Scholar
  17. [17]
    Lalwani GA, Rosenfeld PJ, Fung AE, Dubovy SR, Michels S, Feuer W, Davis JL, Flynn HW, Jr., Esquiabro M (2009) A variable-dosing regimen with intravitreal ranibizumab for neovascular agerelated macular degeneration: year 2 of the PrONTO Study Am J Ophthalmol 148(1):43–58 e1Google Scholar
  18. [18]
    Legarreta JE, Gregori G, Knighton RW, Punjabi OS, Lalwani GA, Puliafito CA (2008) Three-dimensional spectral-domain optical coherence tomography images of the retina in the presence of epiretinal membranes Am J Ophthalmol 145(6):1023–1030PubMedCrossRefGoogle Scholar
  19. [19]
    Legarreta JE, Gregori G, Punjabi OS, Knighton RW, Lalwani GA, Puliafito CA (2008) Macular thickness measurements in normal eyes using spectral domain optical coherence tomography. Ophthalmic Surg Lasers Imaging 39(4 Suppl):S43–9PubMedGoogle Scholar
  20. [20]
    Leitgeb R, Wojtkowski M, Kowalczyk A, Hitzenberger CK, Sticker M, Fercher AF (2000) Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography. Opt Lett 25(11):820–2PubMedCrossRefGoogle Scholar
  21. [21]
    Macular Photocoagulation Study G (1991) Subfoveal neovascular lesions in age-related macular degeneration. Guidelines for evaluation and treatment in the Macular Photocoagulation Study. Arch Ophthalmol 109:1242–1257Google Scholar
  22. [22]
    Maguire P, Vine AK (1986) Geographic atrophy of the retinal pigment epithelium. American Journal of Ophthalmology 102:621–625PubMedGoogle Scholar
  23. [23]
    Massin P, Duguid G, Erginay A, Haouchine B, Gaudric A (2003) Optical coherence tomography for evaluating diabetic macular edema before and after vitrectomy. Am J Ophthalmol 135(2):169–77PubMedCrossRefGoogle Scholar
  24. [24]
    Mitchell PR, Korobelnik JF, Lanzetta P, Holz FG, Pruente C, Schmidt-Erfurth UM, Tano Y, Wolf S (2010) Ranibizumab (Lucentis) in neovascular age-related macular degeneration: evidence from clinical trials. Br J Ophthalmol 94(1):2–13PubMedCrossRefGoogle Scholar
  25. [25]
    Puliafito CA, Hee MR, Lin CP, Reichel E, Schuman JS, Duker JS, Izatt JA, Swanson EA, G. FJ (1995) Imaging of macular diseases with optical coherence tomography. Ophthalmology 102:217–229PubMedGoogle Scholar
  26. [26]
    Puvanathasan P, Forbes P, Ren Z, Malchow D, Boyd S, Bizheva K (2008) High-speed, high-resolution Fourier-domain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region. Opt Lett 33(21):2479–81PubMedGoogle Scholar
  27. [27]
    Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, Kim RY (2006) Ranibizumab for neovascular age-related macular degeneration. N Engl J Med 355(14):1419–31PubMedCrossRefGoogle Scholar
  28. [28]
    Rosenfeld PJ, Rich RM, Lalwani GA (2006) Ranibizumab: Phase III clinical trial results Ophthalmol Clin North Am 19(3):361–72Google Scholar
  29. [29]
    Rothenbuehler SP, Waeber D, Brinkmann CK, Wolf S, Wolf-Schnurrbusch UE (2009) Effects of ranibizumab in patients with subfoveal choroidal neovascularization attributable to agerelated macular degeneration. Am J Ophthalmol 147(5):831–7PubMedCrossRefGoogle Scholar
  30. [30]
    Ruggeri M, Wehbe H, Jiao S, Gregori G, Jockovich ME, Hackam A, Duan Y, Puliafito CA (2007) In vivo three–dimensional highresolution imaging of rodent retina with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 48(4):1808–14PubMedCrossRefGoogle Scholar
  31. [31]
    Sunness JS, Gonzalez-Baron J, Applegate CA, Bressler NM, Tian Y, Hawkins B, Barron Y, Bergman A (1999) Enlargement of atrophy and visual acuity loss in the geographic atrophy form of age-related macular degeneration. Ophthalmology 106(9):1768–1779PubMedCrossRefGoogle Scholar
  32. [32]
    Wojtkowski M, Kowalczyk A, Leitgeb R, Fercher AF (2002) Full range complex spectral optical coherence tomography technique in eye imaging. Opt Lett 27(16):1415–7PubMedCrossRefGoogle Scholar
  33. [33]
    Wojtkowski M, Srinivasan V, Fujimoto JG, Ko T, Schuman JS, Kowalczyk A, Duker JS (2005) Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 112(10):1734–46PubMedCrossRefGoogle Scholar
  34. [34]
    Wolf-Schnurrbusch UE, Ceklic L, Brinkmann CK, Iliev ME, Frey M, Rothenbuehler SP, Enzmann V, Wolf S (2009) Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments. Invest Ophthalmol Vis Sci 50(7):3432–7PubMedCrossRefGoogle Scholar
  35. [35]
    Wolf-Schnurrbusch UE, Enzmann V, Brinkmann CK, Wolf S (2008) Morphologic Changes in Patients with Geographic Atrophy Assessed with a Novel Spectral OCT-SLO Combination. Invest Ophthalmol Vis Sci 49(7):3095–9PubMedCrossRefGoogle Scholar
  36. [36]
    Yi K, Mujat M, Park BH, Sun W, Miller JW, Seddon JM, Young LH, de Boer JF, Chen TC (2009) Spectral domain optical coherence tomography for quantitative evaluation of drusen and associated structural changes in non-neovascular age related macular degeneration. Br J Ophthalmol 93(2):176–81PubMedCrossRefGoogle Scholar
  37. [37]
    Huber R, Adler DC, Srinivasan VJ, Fujimoto JG (2007) Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second. Opt Lett 32:2049–51PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sebastian Wolf
    • 1
  1. 1.Universitätsklinik für Augenheilkunde InselspitalUniversität BernBernSchweiz

Personalised recommendations