Advertisement

Epidemiologie der AMD

  • Lintje Ho
  • Redmer van Leeuwen
  • P. T. V. M. de Jong
  • Johannes R. Vingerling
  • C. C. W. Klaver

Zusammenfassung

Dieses Kapitel ist eine Aktualisierung zum Thema »Epidemiologie der altersabhängigen Makuladegeneration« (AMD) und erläutert die seit der letzten Auflage von 2003 neugewonnenen Erkenntnisse. Ziel des Kapitels ist es, eine Übersicht der aktuellen epidemiologischen Literatur bei AMD zu geben sowie über Diagnose, Häufigkeit, genetische und umweltbedingte Einflussfaktoren und deren mögliche Interaktionen bei AMD zu informieren.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Bird AC, Bressler NM, Bressler SB, et al. (1995) An international classification and grading system for age-related maculopathy and age-related macular degeneration. The International ARM Epidemiological Study Group. Surv Ophthalmol 39(5):367–374PubMedCrossRefGoogle Scholar
  2. [2]
    Klein R, Davis MD, Magli YL, Segal P, Klein BE, Hubbard L (1991) The Wisconsin age-related maculopathy grading system. Ophthalmology 98(7):1128–1134PubMedGoogle Scholar
  3. [3]
    Sho K, Takahashi K, Yamada H, et al. (2003) Polypoidal choroidal vasculopathy: incidence, demographic features, and clinical characteristics. Arch Ophthalmol 121(10):1392–1396PubMedCrossRefGoogle Scholar
  4. [4]
    Kwok AK, Lai TY, Chan CW, Neoh EL, Lam DS (2002) Polypoidal choroidal vasculopathy in Chinese patients. Br J Ophthalmol 86(8):892–897PubMedCrossRefGoogle Scholar
  5. [5]
    Maruko I, Iida T, Saito M, Nagayama D, Saito K (2007) Clinical characteristics of exudative age-related macular degeneration in Japanese patients. Am J Ophthalmol 144(1):15–22PubMedCrossRefGoogle Scholar
  6. [6]
    Oshima Y, Ishibashi T, Murata T, Tahara Y, Kiyohara Y, Kubota T (2001) Prevalence of age related maculopathy in a representative Japanese population: the Hisayama study. Br J Ophthalmol 85(10):1153–1157PubMedCrossRefGoogle Scholar
  7. [7]
    Nirmalan PK, Katz J, Robin AL, et al. (2004) Prevalence of vitreoretinal disorders in a rural population of southern India: the Aravind Comprehensive Eye Study. Arch Ophthalmol 122(4):581–586PubMedCrossRefGoogle Scholar
  8. [8]
    Gupta SK, Murthy GV, Morrison N, et al. (2007) Prevalence of early and late age-related macular degeneration in a rural population in northern India: the INDEYE feasibility study. Invest Ophthalmol Vis Sci 48(3):1007–1011PubMedCrossRefGoogle Scholar
  9. [9]
    Cheng Y, Chen KJ, Wang CJ, Chan SH, Chang WC, Chen JH (2005) Secular trends in coronary heart disease mortality, hospitalization rates, and major cardiovascular risk factors in Taiwan, 1971–2001. Int J Cardiol 100(1):47–52PubMedCrossRefGoogle Scholar
  10. [10]
    Shetty P, Schmidhuber J (2006) Introductory lecture the epidemiology and determinants of obesity in developed and developing countries. Int J Vitam Nutr Res 76(4):157–162PubMedCrossRefGoogle Scholar
  11. [11]
    Eapen D, Kalra GL, Merchant N, Arora A, Khan BV (2009) Metabolic syndrome and cardiovascular disease in South Asians. Vasc Health Risk Manag 5:731–743PubMedGoogle Scholar
  12. [12]
    Misra A, Khurana L (2009) The metabolic syndrome in South Asians: epidemiology, determinants, and prevention. Metab Syndr Relat Disord 7(6):497–514PubMedCrossRefGoogle Scholar
  13. [13]
    Jampol LM, Tielsch J (1992) Race, macular degeneration, and the Macular Photocoagulation Study. Arch 110(12):1699–1700Google Scholar
  14. [14]
    Pieramici DJ, Bressler NM, Bressler SB, Schachat AP (1994) Choroidal neovascularization in black patients. Arch Ophthalmol 112(8):1043–1046PubMedGoogle Scholar
  15. [15]
    Smith W, Assink J, Klein R, et al. (2001) Risk factors for age-related macular degeneration: Pooled findings from three continents. Ophthalmology 108(4):697–704PubMedCrossRefGoogle Scholar
  16. [16]
    Leske MC, Wu SY, Hennis A, et al. (2006) Nine-year incidence of age-related macular degeneration in the Barbados Eye Studies. Ophthalmology 113(1):29–35PubMedCrossRefGoogle Scholar
  17. [17]
    Varma R, Foong AW, Lai MY, Choudhury F, Klein R, Azen SP (2010) Four-year incidence and progression of age-related macular degeneration: the Los Angeles Latino Eye Study. Am J Ophthalmol 149(5):741–751PubMedCrossRefGoogle Scholar
  18. [18]
    Yasuda M, Kiyohara Y, Hata Y, et al. (2009) Nine-year incidence and risk factors for age-related macular degeneration in a defined Japanese population the Hisayama study. Ophthalmology 116(11):2135–2140PubMedCrossRefGoogle Scholar
  19. [19]
    Klein R, Klein BE, Knudtson MD, Meuer SM, Swift M, Gangnon RE (2007) Fifteen-year cumulative incidence of age-related macular degeneration: the Beaver Dam Eye Study. Ophthalmology 114(2):253–262PubMedCrossRefGoogle Scholar
  20. [20]
    Wang JJ, Rochtchina E, Lee AJ, et al. (2007) Ten-year incidence and progression of age-related maculopathy: the blue Mountains Eye Study. Ophthalmology 114(1):92–98PubMedCrossRefGoogle Scholar
  21. [21]
    Buch H, Nielsen NV, Vinding T, Jensen GB, Prause JU, la Cour M (2005) 14–year incidence, progression, and visual morbidity of age-related maculopathy: the Copenhagen City Eye Study. Ophthalmology 112(5):787–798PubMedCrossRefGoogle Scholar
  22. [22]
    Jonasson F, Arnarsson A, Peto T, Sasaki H, Sasaki K, Bird AC (2005) 5-year incidence of age-related maculopathy in the Reykjavik Eye Study. Ophthalmology 112(1):132–138PubMedCrossRefGoogle Scholar
  23. [23]
    Delcourt C, Lacroux A, Carriere I. (2005) The three-year incidence of age-related macular degeneration: the »Pathologies Oculaires Liees a l’Age« (POLA) prospective study. Am J Ophthalmol 140(5):924–926PubMedCrossRefGoogle Scholar
  24. [24]
    Mukesh BN, Dimitrov PN, Leikin S, et al. (2004) Five-year incidence of age-related maculopathy: the Visual Impairment Project. Ophthalmology 111(6):1176–1182PubMedCrossRefGoogle Scholar
  25. [25]
    van Leeuwen R, Klaver CC, Vingerling JR, Hofman A, de Jong PT (2003) The risk and natural course of age-related maculopathy: follow-up at 6 1/2 years in the Rotterdam study. Arch Ophthalmol 121(4):519–526PubMedCrossRefGoogle Scholar
  26. [26]
    Klein R, Klein BE, Tomany SC, Meuer SM, Huang GH (2002) Tenyear incidence and progression of age-related maculopathy: The Beaver Dam eye study. Ophthalmology 109(10):1767–1779PubMedCrossRefGoogle Scholar
  27. [27]
    Mitchell P, Wang JJ, Foran S, Smith W (2002) Five-year incidence of age-related maculopathy lesions: the Blue Mountains Eye Study. Ophthalmology 109(6):1092–1097PubMedCrossRefGoogle Scholar
  28. [28]
    Klaver CC, Assink JJ, van Leeuwen R, et al. (2001) Incidence and progression rates of age-related maculopathy: the Rotterdam Study. Invest Ophthalmol Vis Sci 42(10):2237–2241PubMedGoogle Scholar
  29. [29]
    Macular Photocoagulation Study Group (1997) Risk factors for choroidal neovascularization in the second eye of patients with juxtafoveal or subfoveal choroidal neovascularization secondary to agerelated macular degeneration. Arch Ophthalmol 115(6):741–747Google Scholar
  30. [30]
    Davis MD, Gangnon RE, Lee LY, et al. (2005) The Age-Related Eye Disease Study severity scale for age-related macular degeneration: AREDS Report No. 17. Arch Ophthalmol (11):1484–1498Google Scholar
  31. [31]
    Ferris FL, Davis MD, Clemons TE, et al. (2005) A simplified severity scale for age-related macular degeneration: AREDS Report No. 18. Arch Ophthalmol 123(11):1570–1574PubMedCrossRefGoogle Scholar
  32. [32]
    Bressler SB, Munoz B, Solomon SD, West SK (2008) Racial differences in the prevalence of age-related macular degeneration: the Salisbury Eye Evaluation (SEE) Project. Arch Ophthalmol 126(2):241–245PubMedCrossRefGoogle Scholar
  33. [33]
    Klein R, Klein BE, Jensen SC, Meuer SM (1997) The five-year incidence and progression of age-related maculopathy: the Beaver Dam Eye Study. Ophthalmology 104(1):7–21PubMedGoogle Scholar
  34. [34]
    AREDS (2001) A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol 119(10):1417–1436Google Scholar
  35. [35]
    Holz FG, Wolfensberger TJ, Piguet B, et al. (1994) Bilateral macular drusen in age-related macular degeneration. Prognosis and risk factors. Ophthalmology 101(9):1522–1528PubMedGoogle Scholar
  36. [36]
    Holz FG, Wolfensberger TJ, Piguet B, Minassian D, Bird AC (1994) [Macular drusen. Changes in the retinal pigment epithelium and angiographic characteristics as prognostic markers]. Ophthalmologe 91(6):735–740PubMedGoogle Scholar
  37. [37]
    Mitchell P, Foran S (2005) Age-Related Eye Disease Study severity scale and simplified severity scale for age-related macular degeneration. Arch Ophthalmol 123(11):1598–1599PubMedCrossRefGoogle Scholar
  38. [38]
    Wang JJ, Foran S, Smith W, Mitchell P (2003) Risk of age-related macular degeneration in eyes with macular drusen or hyperpigmentation: the Blue Mountains Eye Study cohort. Arch Ophthalmol 121(5):658–663PubMedCrossRefGoogle Scholar
  39. [39]
    Macular Photocoagulation Study Group (1993) Five-year follow-up of fellow eyes of patients with age-related macular degeneration and unilateral extrafoveal choroidal neovascularization. Arch Ophthalmol 111(9):1189–1199Google Scholar
  40. [40]
    Baun O, Vinding T, Krogh E (1993) Natural course in fellow eyes of patients with unilateral age-related exudative maculopathy. A fluorescein angiographic 4–year follow-up of 45 patients. Acta Ophthalmol (Copenh) 71(3):398–401CrossRefGoogle Scholar
  41. [41]
    Sarraf D, Gin T, Yu F, Brannon A, Owens SL, Bird AC (1999) Longterm drusen study. Retina (6):513–519CrossRefGoogle Scholar
  42. [42]
    Sunness JS (2006) Choroidal neovascularisation and atrophy. Br J Ophthalmol 90(4):398–399PubMedCrossRefGoogle Scholar
  43. [43]
    Sunness JS, Gonzalez-Baron J, Bressler NM, Hawkins B, Applegate CA (1999) The development of choroidal neovascularization in eyes with the geographic atrophy form of age-related macular degeneration. Ophthalmology 106(5):910–919PubMedCrossRefGoogle Scholar
  44. [44]
    Sunness JS, Margalit E, Srikumaran D, et al. (2007) The longterm natural history of geographic atrophy from age-related macular degeneration: enlargement of atrophy and implications for interventional clinical trials. Ophthalmology 114(2):271–277PubMedCrossRefGoogle Scholar
  45. [45]
    Swaroop A, Branham KE, Chen W, Abecasis G (2007) Genetic susceptibility to age-related macular degeneration: a paradigm for dissecting complex disease traits. Hum Mol Genet 16 Spec No. 2:R174–182PubMedCrossRefGoogle Scholar
  46. [46]
    Conley YP, Jakobsdottir J, Mah T, et al. (2006) CFH, ELOVL4, PLEKHA1 and LOC387715 genes and susceptibility to age-related maculopathy: AREDS and CHS cohorts and meta-analyses. Hum Mol Genet 15(21):3206–3218PubMedCrossRefGoogle Scholar
  47. [47]
    Thakkinstian A, Bowe S, McEvoy M, Smith W, Attia J (2006) Association between apolipoprotein E polymorphisms and agerelated macular degeneration: A HuGE review and meta-analysis. Am J Epidemiol 164(9):813–822PubMedCrossRefGoogle Scholar
  48. [48]
    Yates JR, Sepp T, Matharu BK, et al. (2007) Complement C3 variant and the risk of age-related macular degeneration. N Engl J Med 357(6):553–561PubMedCrossRefGoogle Scholar
  49. [49]
    Gold B, Merriam JE, Zernant J, et al. (2006) Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet (4):458–462CrossRefGoogle Scholar
  50. [50]
    Abecasis GR, Yashar BM, Zhao Y, et al. (2004) Age-related macular degeneration: a high-resolution genome scan for susceptibility loci in a population enriched for late-stage disease. Am J Hum Genet 74(3):482–494PubMedCrossRefGoogle Scholar
  51. [51]
    Klein ML, Schultz DW, Edwards A, et al. (1998) Age-related macular degeneration. Clinical features in a large family and linkage to chromosome 1q. Arch Ophthalmol 116(8):1082–1088PubMedGoogle Scholar
  52. [52]
    Majewski J, Schultz DW, Weleber RG, et al. (2003) Age-related macular degeneration–a genome scan in extended families. Am J Hum Genet 73(3):540–550PubMedCrossRefGoogle Scholar
  53. [53]
    Weeks DE, Conley YP, Tsai HJ, et al. (2004) Age-related maculopathy: a genomewide scan with continued evidence of susceptibility loci within the 1q31, 10q26, and 17q25 regions. Am J Hum Genet 75(2):174–189PubMedCrossRefGoogle Scholar
  54. [54]
    Weber JL, Broman KW (2001) Genotyping for human wholegenome scans: past, present, and future. Adv Genet 42:77–96PubMedCrossRefGoogle Scholar
  55. [55]
    Seddon JM, Santangelo SL, Book K, Chong S, Cote J (2003) A genomewide scan for age-related macular degeneration provides evidence for linkage to several chromosomal regions. Am J Hum Genet 73(4):780–790PubMedCrossRefGoogle Scholar
  56. [56]
    Iyengar SK, Song D, Klein BE, et al. (2004) Dissection of genomewide- scan data in extended families reveals a major locus and oligogenic susceptibility for age-related macular degeneration. Am J Hum Genet 74(1):20–39PubMedCrossRefGoogle Scholar
  57. [57]
    Klein RJ, Zeiss C, Chew EY, et al. (2007) Complement factor H polymorphism in age-related macular degeneration. Science 308(5720):385–389CrossRefGoogle Scholar
  58. [58]
    Edwards AO, Ritter R, 3rd, Abel KJ, Manning A, Panhuysen C, Farrer LA (2005) Complement factor H polymorphism and agerelated macular degeneration. Science 308(5720):421–424PubMedCrossRefGoogle Scholar
  59. [59]
    Haines JL, Hauser MA, Schmidt S, et al. (2005) Complement factor H variant increases the risk of age-related macular degeneration. Science 308(5720):419–421PubMedCrossRefGoogle Scholar
  60. [60]
    Souied EH, Leveziel N, Richard F, et al. (2005) Y402H complement factor H polymorphism associated with exudative agerelated macular degeneration in the French population. Mol Vis 11:1135–1140PubMedGoogle Scholar
  61. [61]
    Magnusson KP, Duan S, Sigurdsson H, et al. (2006) CFH Y402H confers similar risk of soft drusen and both forms of advanced AMD. PLoS Med 3(1):e5PubMedCrossRefGoogle Scholar
  62. [62]
    Rivera A, Fisher SA, Fritsche LG, et al. (2005) Hypothetical LOC387715 is a second major susceptibility gene for age-related macular degeneration, contributing independently of complement factor H to disease risk. Hum Mol Genet 14(21):3227–3236PubMedCrossRefGoogle Scholar
  63. [63]
    Zareparsi S, Branham KE, Li M, et al. (2005) Strong association of the Y402H variant in complement factor H at 1q32 with susceptibility to age-related macular degeneration. Am J Hum Genet 77(1):149–153PubMedCrossRefGoogle Scholar
  64. [64]
    Hageman GS, Anderson DH, Johnson LV, et al. (2005) A common haplotype in the complement regulatory gene factor H (HF1/ CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci U S A 102(20):7227–7232PubMedCrossRefGoogle Scholar
  65. [65]
    Sepp T, Khan JC, Thurlby DA, et al. (2006) Complement factor H variant Y402H is a major risk determinant for geographic atrophy and choroidal neovascularization in smokers and nonsmokers. Invest Ophthalmol Vis Sci 47(2):536–540PubMedCrossRefGoogle Scholar
  66. [66]
    Despriet DD, Klaver CC, Witteman JC, et al. (2006) Complement factor H polymorphism, complement activators, and risk of agerelated macular degeneration. JAMA 296(3):301–309PubMedCrossRefGoogle Scholar
  67. [67]
    Fisher SA, Rivera A, Fritsche LG, Babadjanova G, Petrov S, Weber BH (2007) Assessment of the contribution of CFH and chromosome 10q26 AMD susceptibility loci in a Russian population isolate. Br J Ophthalmol 91(5):576–578PubMedCrossRefGoogle Scholar
  68. [68]
    Schaumberg DA, Christen WG, Kozlowski P, Miller DT, Ridker PM, Zee RY (2006) A prospective assessment of the Y402H variant in complement factor H, genetic variants in C-reactive protein, and risk of age-related macular degeneration. Invest Ophthalmol Vis Sci 47(6):2336–2340PubMedCrossRefGoogle Scholar
  69. [69]
    Brantley MA, Jr., Fang AM, King JM, Tewari A, Kymes SM, Shiels A (2007) Association of complement factor H and LOC387715 genotypes with response of exudative age-related macular degeneration to intravitreal bevacizumab. Ophthalmology 114(12):2168–2173PubMedCrossRefGoogle Scholar
  70. [70]
    Seitsonen S, Lemmela S, Holopainen J, et al. (2006) Analysis of variants in the complement factor H, the elongation of very long chain fatty acids-like 4 and the hemicentin 1 genes of agerelated macular degeneration in the Finnish population. Mol Vis 12:796–801PubMedGoogle Scholar
  71. [71]
    Baird PN, Islam FM, Richardson AJ, Cain M, Hunt N, Guymer R (2006) Analysis of the Y402H variant of the complement factor H gene in age-related macular degeneration. Invest Ophthalmol Vis Sci 47(10):4194–4198PubMedCrossRefGoogle Scholar
  72. [72]
    Mori K, Gehlbach PL, Kabasawa S, et al. (2007) Coding and noncoding variants in the CFH gene and cigarette smoking influence the risk of age-related macular degeneration in a Japanese population. Invest Ophthalmol Vis Sci 48(11):5315–5319PubMedCrossRefGoogle Scholar
  73. [73]
    Seddon JM, George S, Rosner B, Klein ML (2006) CFH gene variant, Y402H, and smoking, body mass index, environmental associations with advanced age-related macular degeneration. Hum Hered 61(3):157–165PubMedCrossRefGoogle Scholar
  74. [74]
    Losonczy G, Fekete A, Voko Z, et al. (2009) Analysis of complement factor H Y402H, LOC387715, HTRA1 polymorphisms and ApoE alleles with susceptibility to age-related macular degeneration in Hungarian patients. Acta Ophthalmol [Epub ahead of print]Google Scholar
  75. [75]
    Lau LI, Chen SJ, Cheng CY, et al. (2006) Association of the Y402H polymorphism in complement factor H gene and neovascular age-related macular degeneration in Chinese patients. Invest Ophthalmol Vis Sci 47(8):3242–3246PubMedCrossRefGoogle Scholar
  76. [76]
    Ng TK, Chen LJ, Liu DT, et al. (2008) Multiple gene polymorphisms in the complement factor h gene are associated with exudative age-related macular degeneration in chinese. Invest Ophthalmol Vis Sci 49(8):3312–3317PubMedCrossRefGoogle Scholar
  77. [77]
    Chen LJ, Liu DT, Tam PO, et al. (2006) Association of complement factor H polymorphisms with exudative age-related macular degeneration. Mol Vis 12:1536–1542PubMedGoogle Scholar
  78. [78]
    DeAngelis MM, Ji F, Kim IK, et al. (2007) Cigarette smoking, CFH, APOE, ELOVL4, and risk of neovascular age-related macular degeneration. Arch Ophthalmol 125(1):49–54PubMedCrossRefGoogle Scholar
  79. [79]
    Pulido JS, Peterson LM, Mutapcic L, Bryant S, Highsmith WE (2007) LOC387715/HTRA1 and complement factor H variants in patients with age-related macular degeneration seen at the mayo clinic. Ophthalmic Genet 28(4):203–207PubMedCrossRefGoogle Scholar
  80. [80]
    Weger M, Renner W, Steinbrugger I, et al. (2007) Association of the HTRA1 -625G > A promoter gene polymorphism with exudative age-related macular degeneration in a Central European population. Mol Vis 13:1274–1279PubMedGoogle Scholar
  81. [81]
    Wegscheider BJ, Weger M, Renner W, et al. (2007) Association of complement factor H Y402H gene polymorphism with different subtypes of exudative age-related macular degeneration. Ophthalmology 114(4):738–742PubMedCrossRefGoogle Scholar
  82. [82]
    Chu J, Zhou CC, Lu N, Zhang X, Dong FT (2008) Genetic variants in three genes and smoking show strong associations with susceptibility to exudative age-related macular degeneration in a Chinese population. Chin Med J (Engl) (24):2525–2533Google Scholar
  83. [83]
    Droz I, Mantel I, Ambresin A, Faouzi M, Schorderet DF, Munier FL (2008) Genotype-phenotype correlation of age-related macular degeneration: influence of complement factor H polymorphism. Br J Ophthalmol 92(4):513–517PubMedCrossRefGoogle Scholar
  84. [84]
    Xu Y, Guan N, Xu J, et al. (2008) Association of CFH, LOC387715, and HTRA1 polymorphisms with exudative age-related macular degeneration in a northern Chinese population. Mol Vis 14:1373–1381PubMedGoogle Scholar
  85. [85]
    Chowers I, Cohen Y, Goldenberg-Cohen N, et al. (2008) Association of complement factor H Y402H polymorphism with phenotype of neovascular age related macular degeneration in Israel. Mol Vis 14:1829–1834PubMedGoogle Scholar
  86. [86]
    Liu X, Zhao P, Tang S, et al. (2010) Association Study of Complement Factor H, C2, Cfb, and C3 and Age-Related Macular Degeneration in a Han Chinese Population. Retina 30(8):1177–1184PubMedCrossRefGoogle Scholar
  87. [87]
    Kim IK, Ji F, Morrison MA, et al. (2008) Comprehensive analysis of CRP, CFH Y402H and environmental risk factors on risk of neovascular age-related macular degeneration. Mol Vis 14:1487–1495PubMedGoogle Scholar
  88. [88]
    Ricci F, Zampatti S, D’Abbruzzi F, et al. (2009) Typing of ARMS2 and CFH in age-related macular degeneration: case-control study and assessment of frequency in the Italian population. Arch Ophthalmol 127(10):1368–1372PubMedCrossRefGoogle Scholar
  89. [89]
    Cui L, Zhou H, Yu J, et al. (2010) Noncoding variant in the complement factor H gene and risk of exudative age-related macular degeneration in a Chinese population. Invest Ophthalmol Vis Sci 51(2):1116–1120PubMedCrossRefGoogle Scholar
  90. [90]
    Fuse N, Miyazawa A, Mengkegale M, et al. (2006) Polymorphisms in Complement Factor H and Hemicentin-1 genes in a Japanese population with dry-type age-related macular degeneration. Am J Ophthalmol 142(6):1074–1076PubMedCrossRefGoogle Scholar
  91. [91]
    Tedeschi-Blok N, Buckley J, Varma R, Triche TJ, Hinton DR (2007) Population-based study of early age-related macular degeneration: role of the complement factor H Y402H polymorphism in bilateral but not unilateral disease. Ophthalmology 114(1):99–103PubMedCrossRefGoogle Scholar
  92. [92]
    Ziskind A, Bardien S, Van Der Merwe L, Webster AR (2008) The frequency of the H402 allele of CFH and its involvement with age-related maculopathy in an aged Black African Xhosa population. Ophthalmic Genet 29(3):117–119PubMedCrossRefGoogle Scholar
  93. [93]
    Gao Y, Li Y, Xu L, Zhang HT, Jonas JB, Sun BC (2010) Complement factor H polymorphism in age-related maculopathy in the Chinese population: the Beijing Eye Study. Retina 30(3):443–446PubMedCrossRefGoogle Scholar
  94. [94]
    Rodriguez de Cordoba S, Esparza-Gordillo J, Goicoechea de Jorge E, Lopez-Trascasa M, Sanchez-Corral P (2004) The human complement factor H: functional roles, genetic variations and disease associations. Mol Immunol 41(4):355–367CrossRefGoogle Scholar
  95. [95]
    Skerka C, Lauer N, Weinberger AA, et al. (2007) Defective complement control of factor H (Y402H) and FHL-1 in age-related macular degeneration. Mol Immunol 44(13):3398–3406PubMedCrossRefGoogle Scholar
  96. [96]
    Laine M, Jarva H, Seitsonen S, et al. (2007) Y402H polymorphism of complement factor H affects binding affinity to Creactive protein. J Immunol 178(6):3831–3836PubMedGoogle Scholar
  97. [97]
    Johnson PT, Betts KE, Radeke MJ, Hageman GS, Anderson DH, Johnson LV (2006) Individuals homozygous for the age-related macular degeneration risk-conferring variant of complement factor H have elevated levels of CRP in the choroid. Proc Natl Acad Sci U S A 103(46):17456–17461PubMedCrossRefGoogle Scholar
  98. [98]
    Johnson LV, Leitner WP, Staples MK, Anderson DH (2001) Complement activation and inflammatory processes in Drusen formation and age related macular degeneration. Exp Eye Res 73(6):887–896PubMedCrossRefGoogle Scholar
  99. [99]
    Schmidt S, Hauser MA, Scott WK, et al. (2006) Cigarette smoking strongly modifies the association of LOC387715 and agerelated macular degeneration. Am J Hum Genet 78(5):852–864PubMedCrossRefGoogle Scholar
  100. [100]
    Thakkinstian A, Han P, McEvoy M, et al. (2006) Systematic review and meta-analysis of the association between complement factor H Y402H polymorphisms and age-related macular degeneration. Hum Mol Genet 15(18):2784–2790PubMedCrossRefGoogle Scholar
  101. [101]
    Brantley MA, Jr., Edelstein SL, King JM, Apte RS, Kymes SM, Shiels A (2007) Clinical phenotypes associated with the complement factor H Y402H variant in age-related macular degeneration. Am J Ophthalmol 144(3):404–408PubMedCrossRefGoogle Scholar
  102. [102]
    Simonelli F, Frisso G, Testa F, et al. (2006) Polymorphism p.402Y > H in the complement factor H protein is a risk factor for age related macular degeneration in an Italian population. Br J Ophthalmol 90(9):1142–1145PubMedCrossRefGoogle Scholar
  103. [103]
    Nonyane BA, Nitsch D, Whittaker JC, et al. (2007) An ecological correlation study of late age-related macular degeneration and the complement factor H Y402H polymorphism. Invest Ophthalmol Vis Sci 51(5):2393–2402CrossRefGoogle Scholar
  104. [104]
    Li M, Atmaca-Sonmez P, Othman M, et al. (2006) CFH haplotypes without the Y402H coding variant show strong association with susceptibility to age-related macular degeneration. Nat Genet 38(9):1049–1054PubMedCrossRefGoogle Scholar
  105. [105]
    Maller J, George S, Purcell S, et al. (2006) Common variation in three genes, including a noncoding variant in CFH, strongly influences risk of age-related macular degeneration. Nat Genet 38(9):1055–1059PubMedCrossRefGoogle Scholar
  106. [106]
    Hughes AE, Orr N, Esfandiary H, Diaz-Torres M, Goodship T, Chakravarthy U (2006) A common CFH haplotype, with deletion of CFHR1 and CFHR3, is associated with lower risk of age-related macular degeneration. Nat Genet 38(10):1173–1177PubMedCrossRefGoogle Scholar
  107. [107]
    Spencer KL, Hauser MA, Olson LM, et al. (2008) Deletion of CFHR3 and CFHR1 genes in age-related macular degeneration. Hum Mol Genet 17(7):971–977PubMedCrossRefGoogle Scholar
  108. [108]
    Cann HM, de Toma C, Cazes L, et al. (2002) A human genome diversity cell line panel. Science (5566):261–262CrossRefGoogle Scholar
  109. [109]
    Richardson AJ, Islam FM, Guymer RH, Baird PN (2009) Analysis of rare variants in the complement component 2 (C2) and factor B (BF) genes refine association for age-related macular degeneration (AMD). Invest Ophthalmol Vis Sci (2):540–543Google Scholar
  110. [110]
    Francis PJ, Hamon SC, Ott J, Weleber RG, Klein ML (2009) Polymorphisms in C2, CFB and C3 are associated with progression to advanced age related macular degeneration associated with visual loss. J Med Genet (5):300–307CrossRefGoogle Scholar
  111. [111]
    Spencer KL, Hauser MA, Olson LM, et al. (2007) Protective effect of complement factor B and complement component 2 variants in age-related macular degeneration. Hum Mol Genet 16(16):1986–1992PubMedCrossRefGoogle Scholar
  112. [112]
    Kaur I, Katta S, Reddy RK, et al. (2010) The involvement of complement factor B and complement component C2 in an Indian cohort with age-related macular degeneration. Invest Ophthalmol Vis Sci 51(1):59–63PubMedCrossRefGoogle Scholar
  113. [113]
    McKay GJ, Silvestri G, Patterson CC, Hogg RE, Chakravarthy U, Hughes AE (2009) Further assessment of the complement component 2 and factor B region associated with age-related macular degeneration. Invest Ophthalmol Vis Sci 50(2):533–539PubMedCrossRefGoogle Scholar
  114. [114]
    Jakobsdottir J, Conley YP, Weeks DE, Ferrell RE, Gorin MB (2008) C2 and CFB genes in age-related maculopathy and joint action with CFH and LOC387715 genes. PLoS One 3(5):e2199PubMedCrossRefGoogle Scholar
  115. [115]
    Montes T, Tortajada A, Morgan BP, Rodriguez de Cordoba S, Harris CL (2009) Functional basis of protection against age-related macular degeneration conferred by a common polymorphism in complement factor B. Proc Natl Acad Sci U S A 106(11):4366–4371PubMedCrossRefGoogle Scholar
  116. [116]
    Lokki ML, Koskimies SA (1991) Allelic differences in hemolytic activity and protein concentration of BF molecules are found in association with particular HLA haplotypes. Immunogenetics 34(4):242–246PubMedCrossRefGoogle Scholar
  117. [117]
    Crabb JW, Miyagi M, Gu X, et al. (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci U S A 99(23):14682–14687PubMedCrossRefGoogle Scholar
  118. [118]
    Mullins RF, Russell SR, Anderson DH, Hageman GS (2000) Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J 14(7):835–846PubMedGoogle Scholar
  119. [119]
    Janssen BJ, Christodoulidou A, McCarthy A, Lambris JD, Gros P (2006) Structure of C3b reveals conformational changes that underlie complement activity. Nature 444(7116):213–216PubMedCrossRefGoogle Scholar
  120. [120]
    Nishida N, Walz T, Springer TA (2006) Structural transitions of complement component C3 and its activation products. Proc Natl Acad Sci U S A 103(52):19737–19742PubMedCrossRefGoogle Scholar
  121. [121]
    Sahu A, Lambris JD (2001) Structure and biology of complement protein C3, a connecting link between innate and acquired immunity. Immunol Rev 180;35–48PubMedCrossRefGoogle Scholar
  122. [122]
    Hageman GS, Luthert PJ, Victor Chong NH, Johnson LV, Anderson DH, Mullins RF (2001) An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res 20(6):705–732PubMedCrossRefGoogle Scholar
  123. [123]
    Nozaki M, Raisler BJ, Sakurai E, et al. (2006) Drusen complement components C3a and C5a promote choroidal neovascularization. Proc Natl Acad Sci U S A 103(7):2328–2333PubMedCrossRefGoogle Scholar
  124. [124]
    Maller JB, Fagerness JA, Reynolds RC, Neale BM, Daly MJ, Seddon JM (2007) Variation in complement factor 3 is associated with risk of age-related macular degeneration. Nat Genet 39(10):1200–1201PubMedCrossRefGoogle Scholar
  125. [125]
    Spencer KL, Olson LM, Anderson BM, et al. (2008) C3 R102G polymorphism increases risk of age-related macular degeneration. Hum Mol Genet 17(12):1821–1824PubMedCrossRefGoogle Scholar
  126. [126]
    Edwards AO, Fridley BL, James KM, Sharma AK, Cunningham JM, Tosakulwong N (2008) Evaluation of clustering and genotype distribution for replication in genome wide association studies: the age-related eye disease study. PLoS One 3(11):e3813PubMedCrossRefGoogle Scholar
  127. [127]
    Despriet DD, van Duijn CM, Oostra BA, et al. (2009) Complement component C3 and risk of age-related macular degeneration. Ophthalmology 116(3):474–480 e472PubMedCrossRefGoogle Scholar
  128. [128]
    Park KH, Fridley BL, Ryu E, Tosakulwong N, Edwards AO (2009) Complement component 3 (C3) haplotypes and risk of advanced age-related macular degeneration. Invest Ophthalmol Vis Sci 50(7):3386–3393PubMedCrossRefGoogle Scholar
  129. [129]
    Scholl HP, Fleckenstein M, Fritsche LG, et al. (2009) CFH, C3 and ARMS2 are significant risk loci for susceptibility but not for disease progression of geographic atrophy due to AMD. PLoS One 4(10):e7418PubMedCrossRefGoogle Scholar
  130. [130]
    McKay GJ, Dasari S, Patterson CC, Chakravarthy U, Silvestri G (2010) Complement component 3: an assessment of association with AMD and analysis of gene-gene and gene-environment interactions in a Northern Irish cohort. Mol Vis 16:194–199PubMedGoogle Scholar
  131. [131]
    Bergeron-Sawitzke J, Gold B, Olsh A, et al. (2009) Multilocus analysis of age-related macular degeneration. Eur J Hum Genet 17(9):1190–1199PubMedCrossRefGoogle Scholar
  132. [132]
    Pei XT, Li XX, Bao YZ, et al. (2009) Association of c3 gene polymorphisms with neovascular age-related macular degeneration in a chinese population. Curr Eye Res (8):615–622CrossRefGoogle Scholar
  133. [133]
    Fagerness JA, Maller JB, Neale BM, Reynolds RC, Daly MJ, Seddon JM (2009) Variation near complement factor I is associated with risk of advanced AMD. Eur J Hum Genet 17(1):100–104PubMedCrossRefGoogle Scholar
  134. [134]
    Wang J, Ohno-Matsui K, Yoshida T, et al. (2008) Altered function of factor I caused by amyloid beta: implication for pathogenesis of age-related macular degeneration from Drusen. J Immunol 181(1):712–720PubMedGoogle Scholar
  135. [135]
    Chen W, Stambolian D, Edwards AO, et al. (2010) Genetic variants near TIMP3 and high-density lipoprotein-associated loci influence susceptibility to age-related macular degeneration. Proc Natl Acad Sci U S A 107(16):7401–7406PubMedCrossRefGoogle Scholar
  136. [136]
    Kondo N, Bessho H, Honda S, Negi A (2010) Additional evidence to support the role of a common variant near the complement factor I gene in susceptibility to age-related macular degeneration. Eur J Hum Genet 18(6):634–635PubMedCrossRefGoogle Scholar
  137. [137]
    Ennis S, Gibson J, Cree AJ, Collins A, Lotery AJ (2010) Support for the involvement of complement factor I in age-related macular degeneration. Eur J Hum Genet 18(1):15–16PubMedCrossRefGoogle Scholar
  138. [138]
    Kenealy SJ, Schmidt S, Agarwal A, et al. (2004) Linkage analysis for age-related macular degeneration supports a gene on chromosome 10q26. Mol Vis 10:57–61PubMedGoogle Scholar
  139. [139]
    Yang Z, Camp NJ, Sun H, et al. (2006) A variant of the HTRA1 gene increases susceptibility to age-related macular degeneration. Science 314(5801):992–993PubMedCrossRefGoogle Scholar
  140. [140]
    Dewan A, Liu M, Hartman S, et al. (2006) HTRA1 promoter polymorphism in wet age-related macular degeneration. Science 314(5801):989–992PubMedCrossRefGoogle Scholar
  141. [141]
    Fisher SA, Abecasis GR, Yashar BM, et al. (2005) Meta-analysis of genome scans of age-related macular degeneration. Hum Mol Genet 14(15):2257–2264PubMedCrossRefGoogle Scholar
  142. [142]
    Jakobsdottir J, Conley YP, Weeks DE, Mah TS, Ferrell RE, Gorin MB (2005) Susceptibility genes for age-related maculopathy on chromosome 10q26. Am J Hum Genet. 77(3):389–407PubMedCrossRefGoogle Scholar
  143. [143]
    Kanda A, Chen W, Othman M, et al. (2007) A variant of mitochondrial protein LOC387715/ARMS2, not HTRA1, is strongly associated with age-related macular degeneration. Proc Natl Acad Sci U S A 104(41):16227–16232PubMedCrossRefGoogle Scholar
  144. [144]
    Fritsche LG, Loenhardt T, Janssen A, et al. (2008) Age-related macular degeneration is associated with an unstable ARMS2 (LOC387715) mRNA. Nat Genet 40(7):892–896PubMedCrossRefGoogle Scholar
  145. [145]
    Gibbs D, Yang Z, Constantine R, et al. (2008) Further mapping of 10q26 supports strong association of HTRA1 polymorphisms with age-related macular degeneration. Vision Res 48(5):685–689PubMedCrossRefGoogle Scholar
  146. [146]
    Deangelis MM, Ji F, Adams S, et al. (2008) Alleles in the HtrA serine peptidase 1 gene alter the risk of neovascular age-related macular degeneration. Ophthalmology 115(7):1209–1215 e1207PubMedCrossRefGoogle Scholar
  147. [147]
    Hughes AE, Orr N, Patterson C, et al. (2007) Neovascular agerelated macular degeneration risk based on CFH, LOC387715/HTRA1, and smoking. PLoS Med 4(12):e355PubMedCrossRefGoogle Scholar
  148. [148]
    Seddon JM, Francis PJ, George S, Schultz DW, Rosner B, Klein ML (2007) Association of CFH Y402H and LOC387715 A69S with progression of age-related macular degeneration. JAMA 297(16):1793–1800PubMedCrossRefGoogle Scholar
  149. [149]
    Despriet DD, Klaver CC, van Duijn CC, Janssens AC (2007) Predictive value of multiple genetic testing for age-related macular degeneration. Arch Ophthalmol 125(9):1270–1271PubMedCrossRefGoogle Scholar
  150. [150]
    Wang G, Spencer KL, Scott WK, et al. (2010) Analysis of the indel at the ARMS2 3’UTR in age-related macular degeneration. Hum Genet 127(5):595–602PubMedCrossRefGoogle Scholar
  151. [151]
    Yang Z, Tong Z, Chen Y, et al. (2010) Genetic and functional dissection of HTRA1 and LOC387715 in age-related macular degeneration. PLoS Genet 6(2):e1000836PubMedCrossRefGoogle Scholar
  152. [152]
    Richardson AJ, Islam FA, Aung KZ, Guymer RH, Baird PN (2010) Analysis of the chromosome 10q26 region indicates the intergenic region between the tagSNP rs3793917 and rs11200638 in the HTRA1 gene as associated with age-related macular degeneration. Invest Ophthalmol Vis Sci [Epub ahead of print]Google Scholar
  153. [153]
    Ross RJ, Bojanowski CM, Wang JJ, et al. (2007) The LOC387715 polymorphism and age-related macular degeneration: replication in three case-control samples. Invest Ophthalmol Vis Sci 48(3):1128–1132PubMedCrossRefGoogle Scholar
  154. [154]
    Lu F, Hu J, Zhao P, et al. (2007) HTRA1 variant increases risk to neovascular age-related macular degeneration in Chinese population. Vision Res 47(24):3120–3123PubMedCrossRefGoogle Scholar
  155. [155]
    Gotoh N, Nakanishi H, Hayashi H, et al. (2009) ARMS2 (LOC387715) variants in Japanese patients with exudative age-related macular degeneration and polypoidal choroidal vasculopathy. Am J Ophthalmol 147(6):1037–1041, 1041 e1031–1032PubMedCrossRefGoogle Scholar
  156. [156]
    Hadley D, Orlin A, Brown G, et al. (2010) Analysis of six genetic risk factors highly associated with AMD in the region surrounding ARMS2 and HTRA1 on chromosome 10, region q26. Invest Ophthalmol Vis Sci 51(4):2191–2196PubMedCrossRefGoogle Scholar
  157. [157]
    Barron MJ, Johnson MA, Andrews RM, et al. (2001) Mitochondrial abnormalities in ageing macular photoreceptors. Invest Ophthalmol Vis Sci 42(12):3016–3022PubMedGoogle Scholar
  158. [158]
    Feher J, Kovacs I, Artico M, Cavallotti C, Papale A, Balacco Gabrieli C (2006) Mitochondrial alterations of retinal pigment epithelium in age-related macular degeneration. Neurobiol Aging 27(7):983–993PubMedCrossRefGoogle Scholar
  159. [159]
    Jarrett SG, Lin H, Godley BF, Boulton ME (2008) Mitochondrial DNA damage and its potential role in retinal degeneration. Prog Retin Eye Res 27(6):596–607PubMedCrossRefGoogle Scholar
  160. [160]
    Liang FQ, Godley BF (2003) Oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells: a possible mechanism for RPE aging and age-related macular degeneration. Exp Eye Res 76(4):397–403PubMedCrossRefGoogle Scholar
  161. [161]
    Wang AL, Lukas TJ, Yuan M, Neufeld AH (2008) Increased mitochondrial DNA damage and down-regulation of DNA repair enzymes in aged rodent retinal pigment epithelium and choroid. Mol Vis 14:644–651PubMedGoogle Scholar
  162. [162]
    Wang G, Spencer KL, Court BL, et al. (2009) Localization of agerelated macular degeneration-associated ARMS2 in cytosol, not mitochondria. Invest Ophthalmol Vis Sci 50(7):3084–3090PubMedCrossRefGoogle Scholar
  163. [163]
    Kortvely E, Hauck SM, Duetsch G, et al. (2010) ARMS2 is a constituent of the extracellular matrix providing a link between familial and sporadic age-related macular degenerations. Invest Ophthalmol Vis Sci 51(1):79–88PubMedCrossRefGoogle Scholar
  164. [164]
    Tang NP, Zhou B, Wang B, Yu RB (2009) HTRA1 promoter polymorphism and risk of age-related macular degeneration: a meta-analysis. Ann Epidemiol 19(10):740–745PubMedCrossRefGoogle Scholar
  165. [165]
    Chen W, Xu W, Tao Q, et al. (2009) Meta-analysis of the association of the HTRA1 polymorphisms with the risk of age-related macular degeneration. Exp Eye Res 89(3):292–300PubMedCrossRefGoogle Scholar
  166. [166]
    Chan CC, Shen D, Zhou M, et al. (2007) Human HtrA1 in the archived eyes with age-related macular degeneration. Trans Am Ophthalmol Soc 105:92–97; discussion 97–98PubMedGoogle Scholar
  167. [167]
    Tuo J, Ross RJ, Reed GF, et al. (2008) The HtrA1 promoter polymorphism, smoking, and age-related macular degeneration in multiple case-control samples. Ophthalmology 115(11):1891–1898PubMedCrossRefGoogle Scholar
  168. [168]
    Chowers I, Meir T, Lederman M, et al. (2008) Sequence variants in HTRA1 and LOC387715/ARMS2 and phenotype and response to photodynamic therapy in neovascular age-related macular degeneration in populations from Israel. Mol Vis 14:2263–2271PubMedGoogle Scholar
  169. [169]
    Zumbrunn J, Trueb B (1996) Primary structure of a putative serine protease specific for IGF-binding proteins. FEBS Lett 398(2–3):187–192PubMedCrossRefGoogle Scholar
  170. [170]
    Oka C, Tsujimoto R, Kajikawa M, et al. (2004) HtrA1 serine protease inhibits signaling mediated by Tgfbeta family proteins. Development 131(5):1041–1053PubMedCrossRefGoogle Scholar
  171. [171]
    Mathura JR, Jr., Jafari N, Chang JT, et al. (2000) Bone morphogenetic proteins-2 and -4: negative growth regulators in adult retinal pigmented epithelium. Invest Ophthalmol Vis Sci 41(2):592–600PubMedGoogle Scholar
  172. [172]
    Mahley RW (1988) Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240(4852):622–630PubMedCrossRefGoogle Scholar
  173. [173]
    Ishida BY, Bailey KR, Duncan KG, et al. (2004) Regulated expression of apolipoprotein E by human retinal pigment epithelial cells. J Lipid Res 45(2):263–271PubMedCrossRefGoogle Scholar
  174. [174]
    Slooter AJ, Tang MX, van Duijn CM, et al. (1997) Apolipoprotein E epsilon4 and the risk of dementia with stroke. A populationbased investigation. JAMA 277(10):818–821PubMedCrossRefGoogle Scholar
  175. [175]
    Evans DA, Beckett LA, Field TS, et al. (1997) Apolipoprotein E epsilon4 and incidence of Alzheimer disease in a community population of older persons. JAMA 277(10):822–824PubMedCrossRefGoogle Scholar
  176. [176]
    Wang L, Clark ME, Crossman DK, et al. (2010) Abundant lipid and protein components of drusen. PLoS One 5(4):e10329PubMedCrossRefGoogle Scholar
  177. [177]
    Anderson DH, Talaga KC, Rivest AJ, Barron E, Hageman GS, Johnson LV (2004) Characterization of beta amyloid assemblies in drusen: the deposits associated with aging and age-related macular degeneration. Exp Eye Res 78(2):243–256PubMedCrossRefGoogle Scholar
  178. [178]
    Anderson DH, Ozaki S, Nealon M, et al. (2001) Local cellular sources of apolipoprotein E in the human retina and retinal pigmented epithelium: implications for the process of drusen formation. Am J Ophthalmol 131(6):767–781PubMedCrossRefGoogle Scholar
  179. [179]
    Li CM, Clark ME, Chimento MF, Curcio CA (2006) Apolipoprotein localization in isolated drusen and retinal apolipoprotein gene expression. Invest Ophthalmol Vis Sci 47(7):3119–3128PubMedCrossRefGoogle Scholar
  180. [180]
    Klaver CC, Kliffen M, van Duijn CM, et al. (1998) Genetic association of apolipoprotein E with age-related macular degeneration. Am J Hum Genet 63(1):200–206PubMedCrossRefGoogle Scholar
  181. [181]
    Jarvik GP (1997) Genetic predictors of common disease: apolipoprotein E genotype as a paradigm. Ann Epidemiol (5):357–362CrossRefGoogle Scholar
  182. [182]
    Zannis VI (1986) Genetic polymorphism in human apolipoprotein E. Methods Enzymol 128:823–851PubMedCrossRefGoogle Scholar
  183. [183]
    Souied EH, Benlian P, Amouyel P, et al. (1998) The epsilon4 allele of the apolipoprotein E gene as a potential protective factor for exudative age-related macular degeneration. Am J Ophthalmol 125(3):353–359PubMedCrossRefGoogle Scholar
  184. [184]
    Schmidt S, Klaver C, Saunders A, et al. (2002) A pooled casecontrol study of the apolipoprotein E (APOE) gene in agerelated maculopathy. Ophthalmic Genet 23(4):209–223PubMedCrossRefGoogle Scholar
  185. [185]
    Simonelli F, Margaglione M, Testa F, et al. (2001) Apolipoprotein E polymorphisms in age-related macular degeneration in an Italian population. Ophthalmic Res 33(6):325–328PubMedCrossRefGoogle Scholar
  186. [186]
    Bojanowski CM, Shen D, Chew EY, et al. (2006) An apolipoprotein E variant may protect against age-related macular degeneration through cytokine regulation. Environ Mol Mutagen. Oct 2006;47(8):594–602CrossRefGoogle Scholar
  187. [187]
    Schmidt S, Saunders AM, De La Paz MA, et al. (2006) Association of the apolipoprotein E gene with age-related macular degeneration: possible effect modification by family history, age, and gender. Mol Vis 6:287–293Google Scholar
  188. [188]
    Zareparsi S, Reddick AC, Branham KE, et al. (2004) Association of apolipoprotein E alleles with susceptibility to age-related macular degeneration in a large cohort from a single center. Invest Ophthalmol Vis Sci (5):1306–1310CrossRefGoogle Scholar
  189. [189]
    Baird PN, Richardson AJ, Robman LD, et al. (2006) Apolipoprotein (APOE) gene is associated with progression of age-related macular degeneration (AMD). Hum Mutat 27(4):337–342PubMedCrossRefGoogle Scholar
  190. [190]
    Pang CP, Baum L, Chan WM, Lau TC, Poon PM, Lam DS (2000) The apolipoprotein E epsilon4 allele is unlikely to be a major risk factor of age-related macular degeneration in Chinese. Ophthalmologica 214(4):289–291PubMedCrossRefGoogle Scholar
  191. [191]
    Schultz DW, Klein ML, Humpert A, et al. (2003) Lack of an association of apolipoprotein E gene polymorphisms with familial age-related macular degeneration. Arch Ophthalmol 121(5):679–683PubMedCrossRefGoogle Scholar
  192. [192]
    Utheim OA, Ritland JS, Utheim TP, et al. (2008) Apolipoprotein E genotype and risk for development of cataract and age-related macular degeneration. Acta Ophthalmol 86(4):401–403PubMedCrossRefGoogle Scholar
  193. [193]
    Wong TY, Shankar A, Klein R, et al. (2006) Apolipoprotein E gene and early age-related maculopathy: the Atherosclerosis Risk in Communities Study. Ophthalmology 113(2):255–259PubMedCrossRefGoogle Scholar
  194. [194]
    Gotoh N, Kuroiwa S, Kikuchi T, et al. (2004) Apolipoprotein E polymorphisms in Japanese patients with polypoidal choroidal vasculopathy and exudative age-related macular degeneration. Am J Ophthalmol 138(4):567–573PubMedCrossRefGoogle Scholar
  195. [195]
    Baird PN, Guida E, Chu DT, Vu HT, Guymer RH (2004) The epsilon2 and epsilon4 alleles of the apolipoprotein gene are associated with age-related macular degeneration. Invest Ophthalmol Vis Sci 45(5):1311–1315PubMedCrossRefGoogle Scholar
  196. [196]
    Tikellis G, Sun C, Gorin MB, et al. (2007) Apolipoprotein e gene and age-related maculopathy in older individuals: the cardiovascular health study. Arch Ophthalmol 125(1):68–73PubMedCrossRefGoogle Scholar
  197. [197]
    Fritsche LG, Freitag-Wolf S, Bettecken T, et al. (2009) Age-related macular degeneration and functional promoter and coding variants of the apolipoprotein E gene. Hum Mutat 30(7):1048–1053PubMedCrossRefGoogle Scholar
  198. [198]
    Beatty S, Koh H, Phil M, Henson D, Boulton M (2000) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 45(2):115–134PubMedCrossRefGoogle Scholar
  199. [199]
    Ma KL, Ruan XZ, Powis SH, Chen Y, Moorhead JF, Varghese Z (2008) Inflammatory stress exacerbates lipid accumulation in hepatic cells and fatty livers of apolipoprotein E knockout mice. Hepatology 48(3):770–781PubMedCrossRefGoogle Scholar
  200. [200]
    Lynch JR, Wang H, Mace B, et al. (2005) A novel therapeutic derived from apolipoprotein E reduces brain inflammation and improves outcome after closed head injury. Exp Neurol 192(1):109–116PubMedCrossRefGoogle Scholar
  201. [201]
    Mahley RW, Huang Y (2006) Apolipoprotein (apo) E4 and Alzheimer’s disease: unique conformational and biophysical properties of apoE4 can modulate neuropathology. Acta Neurol Scand Suppl 185:8–14PubMedCrossRefGoogle Scholar
  202. [202]
    Lee SJ, Kim JH, Chung MJ, et al. (2007) Human apolipoprotein E2 transgenic mice show lipid accumulation in retinal pigment epithelium and altered expression of VEGF and bFGF in the eyes. J Microbiol Biotechnol 17(6):1024–1030PubMedGoogle Scholar
  203. [203]
    Eiriksdottir G, Aspelund T, Bjarnadottir K, et al. (2006) Apolipoprotein E genotype and statins affect CRP levels through independent and different mechanisms: AGES-Reykjavik Study. Atherosclerosis 186(1):222–224PubMedCrossRefGoogle Scholar
  204. [204]
    Austin MA, Zhang C, Humphries SE, et al. (2004) Heritability of C-reactive protein and association with apolipoprotein E genotypes in Japanese Americans. Ann Hum Genet 68(Pt 3):179–188PubMedCrossRefGoogle Scholar
  205. [205]
    Judson R, Brain C, Dain B, Windemuth A, Ruano G, Reed C (2004) New and confirmatory evidence of an association between APOE genotype and baseline C-reactive protein in dyslipidemic individuals. Atherosclerosis (2):345–351CrossRefGoogle Scholar
  206. [206]
    Manttari M, Manninen V, Palosuo T, Ehnholm C (2001) Apolipoprotein E polymorphism and C-reactive protein in dyslipidemic middle-aged men. Atherosclerosis 156(1):237–238PubMedCrossRefGoogle Scholar
  207. [207]
    Marz W, Scharnagl H, Hoffmann MM, Boehm BO, Winkelmann BR (2004) The apolipoprotein E polymorphism is associated with circulating C-reactive protein (the Ludwigshafen risk and cardiovascular health study). Eur Heart J 25(23):2109–2119PubMedCrossRefGoogle Scholar
  208. [208]
    Rontu R, Ojala P, Hervonen A, et al. (2006) Apolipoprotein E genotype is related to plasma levels of C-reactive protein and lipids and to longevity in nonagenarians. Clin Endocrinol (Oxf) 64(3):265–270CrossRefGoogle Scholar
  209. [209]
    Malek G, Johnson LV, Mace BE, et al. (2005) Apolipoprotein E allele-dependent pathogenesis: a model for age-related retinal degeneration. Proc Natl Acad Sci U S A (33):11900–11905CrossRefGoogle Scholar
  210. [210]
    Katsuya T, Baba S, Ishikawa K, et al. (2002) Epsilon 4 allele of apolipoprotein E gene associates with lower blood pressure in young Japanese subjects: the Suita Study. J Hypertens 20(10):2017–2021PubMedCrossRefGoogle Scholar
  211. [211]
    Grindle CF, Marshall J (1978) Ageing changes in Bruch’s membrane and their functional implications. Trans Ophthalmol Soc U K 98(1):172–175PubMedGoogle Scholar
  212. [212]
    Ignatius MJ, Gebicke-Harter PJ, Skene JH, et al. (1986) Expression of apolipoprotein E during nerve degeneration and regeneration. Proc Natl Acad Sci U S A 83(4):1125–1129PubMedCrossRefGoogle Scholar
  213. [213]
    Poirier J, Baccichet A, Dea D, Gauthier S (1993) Cholesterol synthesis and lipoprotein reuptake during synaptic remodelling in hippocampus in adult rats. Neuroscience 55(1):81–90PubMedCrossRefGoogle Scholar
  214. [214]
    De La Paz MA, Pericak-Vance MA, Lennon F, Haines JL, Seddon JM (1997) Exclusion of TIMP3 as a candidate locus in age-related macular degeneration. Invest Ophthalmol Vis Sci 38(6):1060–1065Google Scholar
  215. [215]
    Felbor U, Doepner D, Schneider U, Zrenner E, Weber BH (1997) Evaluation of the gene encoding the tissue inhibitor of metalloproteinases- 3 in various maculopathies. Invest Ophthalmol Vis Sci 38(6):1054–1059PubMedGoogle Scholar
  216. [216]
    Strunnikova NV, Maminishkis A, Barb JJ, et al. (2010) Transcriptome analysis and molecular signature of human retinal pigment epithelium. Hum Mol Genet 19(12):2468–2486PubMedCrossRefGoogle Scholar
  217. [217]
    Weber BH, Vogt G, Pruett RC, Stohr H, Felbor U (1994) Mutations in the tissue inhibitor of metalloproteinases-3 (TIMP3) in patients with Sorsby’s fundus dystrophy. Nat Genet 8(4):352–356PubMedCrossRefGoogle Scholar
  218. [218]
    Kathiresan S, Willer CJ, Peloso GM, et al. (2009) Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet 41(1):56–65PubMedCrossRefGoogle Scholar
  219. [219]
    Willer CJ, Sanna S, Jackson AU, et al. (2008) Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet 40(2):161–169PubMedCrossRefGoogle Scholar
  220. [220]
    Neale BM, Fagerness J, Reynolds R, et al. (2010) Genome-wide association study of advanced age-related macular degeneration identifies a role of the hepatic lipase gene (LIPC). Proc Natl Acad Sci U S A 107(16):7395–7400PubMedCrossRefGoogle Scholar
  221. [221]
    Hasham SN, Pillarisetti S (2006) Vascular lipases, inflammation and atherosclerosis. Clin Chim Acta 372(1–2):179–183PubMedCrossRefGoogle Scholar
  222. [222]
    Wang W, Connor SL, Johnson EJ, Klein ML, Hughes S, Connor WE (2007) Effect of dietary lutein and zeaxanthin on plasma carotenoids and their transport in lipoproteins in age-related macular degeneration. Am J Clin Nutr 85(3):762–769PubMedGoogle Scholar
  223. [223]
    Tserentsoodol N, Gordiyenko NV, Pascual I, Lee JW, Fliesler SJ, Rodriguez IR (2006) Intraretinal lipid transport is dependent on high density lipoprotein-like particles and class B scavenger receptors. Mol Vis 12:1319–1333PubMedGoogle Scholar
  224. [224]
    Curcio CA, Presley JB, Malek G, Medeiros NE, Avery DV, Kruth HS (2005) Esterified and unesterified cholesterol in drusen and basal deposits of eyes with age-related maculopathy. Exp Eye Res 81(6):731–741PubMedCrossRefGoogle Scholar
  225. [225]
    Kindzelskii AL, Elner VM, Elner SG, Yang D, Hughes BA, Petty HR (2004) Toll-like receptor 4 (TLR4) of retinal pigment epithelial cells participates in transmembrane signaling in response to photoreceptor outer segments. J Gen Physiol 124(2):139–149PubMedCrossRefGoogle Scholar
  226. [226]
    Elner SG, Petty HR, Elner VM, et al. (2005) TLR4 mediates human retinal pigment epithelial endotoxin binding and cytokine expression. Invest Ophthalmol Vis Sci 46(12):4627–4633PubMedCrossRefGoogle Scholar
  227. [227]
    Lewin AS (2009) Geographic atrophy in age-related macular degeneration and TLR3. N Engl J Med 360(21):2251; author reply 2255–2256Google Scholar
  228. [228]
    Liew G, Mitchell P, Wong TY (2009) Geographic atrophy in age-related macular degeneration and TLR3. N Engl J Med 360(21):2252; author reply 2255–2256Google Scholar
  229. [229]
    Allikmets R, Bergen AA, Dean M, et al. (2009) Geographic atrophy in age-related macular degeneration and TLR3. N Engl J Med 360(21):2252–2254; author reply 2255–2256PubMedGoogle Scholar
  230. [230]
    Edwards AO, Chen D, Fridley BL, et al. (2008) Toll-like receptor polymorphisms and age-related macular degeneration. Invest Ophthalmol Vis Sci 49(4):1652–1659PubMedCrossRefGoogle Scholar
  231. [231]
    Edwards AO, Swaroop A, Seddon JM (2009) Geographic atrophy in age-related macular degeneration and TLR3. N Engl J Med (21):2254–2255; author reply 2255–2256Google Scholar
  232. [232]
    Cho Y, Wang JJ, Chew EY, et al. (2009) Toll-like receptor polymorphisms and age-related macular degeneration: replication in three case-control samples. Invest Ophthalmol Vis Sci 50(12):5614–5618PubMedCrossRefGoogle Scholar
  233. [233]
    Despriet DD, Bergen AA, Merriam JE, et al. (2008) Comprehensive analysis of the candidate genes CCL2, CCR2, and TLR4 in age-related macular degeneration. Invest Ophthalmol Vis Sci 49(1):364–371PubMedCrossRefGoogle Scholar
  234. [234]
    Kaur I, Hussain A, Hussain N, et al. (2006) Analysis of CFH, TLR4, and APOE polymorphism in India suggests the Tyr402His variant of CFH to be a global marker for age-related macular degeneration. Invest Ophthalmol Vis Sci 47(9):3729–3735PubMedCrossRefGoogle Scholar
  235. [235]
    Richardson AJ, Islam FM, Guymer RH, Cain M, Baird PN (2007) A tag-single nucleotide polymorphisms approach to the vascular endothelial growth factor-A gene in age-related macular degeneration. Mol Vis 13:2148–2152PubMedGoogle Scholar
  236. [236]
    Churchill AJ, Carter JG, Lovell HC, et al. (2006) VEGF polymorphisms are associated with neovascular age-related macular degeneration. Hum Mol Genet 15(19):2955–2961PubMedCrossRefGoogle Scholar
  237. [237]
    Haines JL, Schnetz-Boutaud N, Schmidt S, et al. (2006) Functional candidate genes in age-related macular degeneration: significant association with VEGF, VLDLR, and LRP6. Invest Ophthalmol Vis Sci 47(1):329–335PubMedCrossRefGoogle Scholar
  238. [238]
    Lin JM, Wan L, Tsai YY, et al. (2008) Vascular endothelial growth factor gene polymorphisms in age-related macular degeneration. Am J Ophthalmol 145(6):1045–1051PubMedCrossRefGoogle Scholar
  239. [239]
    Boekhoorn SS, Isaacs A, Uitterlinden AG, et al. (2008) Polymorphisms in the vascular endothelial growth factor gene and risk of age-related macular degeneration: the Rotterdam Study. Ophthalmology 115(11):1899–1903PubMedCrossRefGoogle Scholar
  240. [240]
    Kimura K, Isashiki Y, Sonoda S, Kakiuchi-Matsumoto T, Ohba N (2000) Genetic association of manganese superoxide dismutase with exudative age-related macular degeneration. Am J Ophthalmol 130(6):769–773PubMedCrossRefGoogle Scholar
  241. [241]
    Kondo N, Bessho H, Honda S, Negi A (2009) SOD2 gene polymorphisms in neovascular age-related macular degeneration and polypoidal choroidal vasculopathy. Mol Vis 15:1819–1826PubMedGoogle Scholar
  242. [242]
    Gotoh N, Yamada R, Matsuda F, Yoshimura N, Iida T (2008) Manganese superoxide dismutase gene (SOD2) polymorphism and exudative age-related macular degeneration in the Japanese population. Am J Ophthalmol (1):146; author reply 146–147CrossRefGoogle Scholar
  243. [243]
    Esfandiary H, Chakravarthy U, Patterson C, Young I, Hughes AE (2005) Association study of detoxification genes in age related macular degeneration. Br J Ophthalmol 89(4):470–474PubMedCrossRefGoogle Scholar
  244. [244]
    Ikeda T, Obayashi H, Hasegawa G, et al. (2001) Paraoxonase gene polymorphisms and plasma oxidized low-density lipoprotein level as possible risk factors for exudative age-related macular degeneration. Am J Ophthalmol (2):191–195CrossRefGoogle Scholar
  245. [245]
    Pauer GJ, Sturgill GM, Peachey NS, Hagstrom SA (2010) Protective effect of paraoxonase 1 gene variant Gln192Arg in age-related macular degeneration. Am J Ophthalmol 149(3):513–522PubMedCrossRefGoogle Scholar
  246. [246]
    Baird PN, Chu D, Guida E, Vu HT, Guymer R (2004) Association of the M55L and Q192R paraoxonase gene polymorphisms with age-related macular degeneration. Am J Ophthalmol 138(4):665–666PubMedCrossRefGoogle Scholar
  247. [247]
    Allikmets R (2000) Further evidence for an association of ABCR alleles with age-related macular degeneration. The International ABCR Screening Consortium. Am J Hum Genet 67(2):487–491PubMedCrossRefGoogle Scholar
  248. [248]
    Allikmets R, Shroyer NF, Singh N, et al. (1997) Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science 277(5333):1805–1807PubMedCrossRefGoogle Scholar
  249. [249]
    Shroyer NF, Lewis RA, Yatsenko AN, Wensel TG, Lupski JR (2001) Cosegregation and functional analysis of mutant ABCR (ABCA4) alleles in families that manifest both Stargardt disease and agerelated macular degeneration. Hum Mol Genet (23):2671–2678CrossRefGoogle Scholar
  250. [250]
    Stone EM, Braun TA, Russell SR, et al. (2004) Missense variations in the fibulin 5 gene and age-related macular degeneration. N Engl J Med 351(4):346–353PubMedCrossRefGoogle Scholar
  251. [251]
    Jones RP, Ridley C, Jowitt TA, et al. (2010) Structural effects of fibulin 5 missense mutations associated with age-related macular degeneration and cutis laxa. Invest Ophthalmol Vis Sci 51(5):2356–2362PubMedCrossRefGoogle Scholar
  252. [252]
    Mullins RF, Olvera MA, Clark AF, Stone EM (2007) Fibulin-5 distribution in human eyes: relevance to age-related macular degeneration. Exp Eye Res 84(2):378–380PubMedCrossRefGoogle Scholar
  253. [253]
    Lotery AJ, Baas D, Ridley C, et al. (2006) Reduced secretion of fibulin 5 in age-related macular degeneration and cutis laxa. Hum Mutat 27(6):568–574PubMedCrossRefGoogle Scholar
  254. [254]
    Schultz DW, Weleber RG, Lawrence G, et al. (2005) HEMICENTIN- 1 (FIBULIN-6) and the 1q31 AMD locus in the context of complex disease: review and perspective. Ophthalmic Genet 26(2):101–105PubMedCrossRefGoogle Scholar
  255. [255]
    Schultz DW, Klein ML, Humpert AJ, et al. (2003) Analysis of the ARMD1 locus: evidence that a mutation in HEMICENTIN-1 is associated with age-related macular degeneration in a large family. Hum Mol Genet 12(24):3315–3323PubMedCrossRefGoogle Scholar
  256. [256]
    Thompson CL, Klein BE, Klein R, et al. (2007) Complement factor H and hemicentin-1 in age-related macular degeneration and renal phenotypes. Hum Mol Genet 16(17):2135–2148PubMedCrossRefGoogle Scholar
  257. [257]
    Hayashi M, Merriam JE, Klaver CC, et al. (2004) Evaluation of the ARMD1 locus on 1q25–31 in patients with age-related maculopathy: genetic variation in laminin genes and in exon 104 of HEMICENTIN-1. Ophthalmic Genet 25(2):111–119PubMedCrossRefGoogle Scholar
  258. [258]
    Fisher SA, Rivera A, Fritsche LG, et al. (2007) Case-control genetic association study of fibulin-6 (FBLN6 or HMCN1) variants in age-related macular degeneration (AMD). Hum Mutat 28(4):406–413PubMedCrossRefGoogle Scholar
  259. [259]
    Bojanowski CM, Tuo J, Chew EY, Csaky KG, Chan CC (2005) Analysis of Hemicentin-1, hOgg1, and E-selectin single nucleotide polymorphisms in age-related macular degeneration. Trans Am Ophthalmol Soc 103:37–44; discussion 44–35PubMedGoogle Scholar
  260. [260]
    Ennis S, Jomary C, Mullins R, et al. (2008) Association between the SERPING1 gene and age-related macular degeneration: a two-stage case-control study. Lancet 372(9652):1828–1834PubMedCrossRefGoogle Scholar
  261. [261]
    Allikmets R, Dean M, Hageman GS, et al. (2009) The SERPING1 gene and age-related macular degeneration. Lance 374(9693):875–876; author reply 876–877CrossRefGoogle Scholar
  262. [262]
    Park KH, Ryu E, Tosakulwong N, Wu Y, Edwards AO (2009) Common variation in the SERPING1 gene is not associated with age-related macular degeneration in two independent groups of subjects. Mol Vis 15:200–207PubMedGoogle Scholar
  263. [263]
    Lu F, Zhao P, Fan Y, et al. (2010) An association study of SERPING1 gene and age-related macular degeneration in a Han Chinese population. Mol Vis 16:1–6PubMedGoogle Scholar
  264. [264]
    Carter JG, Churchill AJ (2011) Analysis of SERPING1 and its association with age-related macular degeneration. Acta Ophthalmol 89(2):e212–23PubMedCrossRefGoogle Scholar
  265. [265]
    Thornton J, Edwards R, Mitchell P, Harrison RA, Buchan I, Kelly SP (2005) Smoking and age-related macular degeneration: a review of association. Eye (Lond) 19(9):935–944Google Scholar
  266. [266]
    Neuner B, Komm A, Wellmann J, et al. (2009) Smoking history and the incidence of age-related macular degeneration–results from the Muenster Aging and Retina Study (MARS) cohort and systematic review and meta-analysis of observational longitudinal studies. Addict Behav 34(11):938–947PubMedCrossRefGoogle Scholar
  267. [267]
    Tomany SC, Wang JJ, Van Leeuwen R, et al. (2004) Risk factors for incident age-related macular degeneration: pooled findings from 3 continents. Ophthalmology 111(7):1280–1287PubMedCrossRefGoogle Scholar
  268. [268]
    Evans JR, Fletcher AE, Wormald RP (2005) 28,000 Cases of age related macular degeneration causing visual loss in people aged 75 years and above in the United Kingdom may be attributable to smoking. Br J Ophthalmol 89(5):550–553PubMedCrossRefGoogle Scholar
  269. [269]
    van Leeuwen R, Boekhoorn S, Vingerling JR, et al. (2005) Dietary intake of antioxidants and risk of age-related macular degeneration. Jama (24):3101–3107CrossRefGoogle Scholar
  270. [270]
    Tan JS, Wang JJ, Flood V, Rochtchina E, Smith W, Mitchell P (2008) Dietary antioxidants and the long-term incidence of age-related macular degeneration: the Blue Mountains Eye Study. Ophthalmology 115(2):334–341PubMedCrossRefGoogle Scholar
  271. [271]
    VandenLangenberg GM, Mares-Perlman JA, Klein R, Klein BE, Brady WE, Palta M (1998) Associations between antioxidant and zinc intake and the 5-year incidence of early age-related maculopathy in the Beaver Dam Eye Study. Am J Epidemiol 148(2):204–214PubMedGoogle Scholar
  272. [272]
    SanGiovanni JP, Chew EY, Agron E, et al. (2008) The relationship of dietary omega-3 long-chain polyunsaturated fatty acid intake with incident age-related macular degeneration: AREDS report no. 23. Arch Ophthalmol 126(9):1274–1279PubMedCrossRefGoogle Scholar
  273. [273]
    Chua B, Flood V, Rochtchina E, Wang JJ, Smith W, Mitchell P (2006) Dietary fatty acids and the 5-year incidence of agerelated maculopathy. Arch Ophthalmol 124(7):981–986PubMedCrossRefGoogle Scholar
  274. [274]
    Cho E, Hung S, Willett WC, et al. (2001) Prospective study of dietary fat and the risk of age-related macular degeneration. Am J Clin Nutr 73(2):209–218PubMedGoogle Scholar
  275. [275]
    Chong EW, Kreis AJ, Wong TY, Simpson JA, Guymer RH (2008) Dietary omega-3 fatty acid and fish intake in the primary prevention of age-related macular degeneration: a systematic review and meta-analysis. Arch Ophthalmol 126(6):826–833PubMedCrossRefGoogle Scholar
  276. [276]
    Fraser-Bell S, Wu J, Klein R, et al. (2008) Cardiovascular risk factors and age-related macular degeneration: the Los Angeles Latino Eye Study. Am J Ophthalmol 145(2):308–316PubMedCrossRefGoogle Scholar
  277. [277]
    Smith W, Mitchell P, Leeder SR, Wang JJ (1998) Plasma fibrinogen levels, other cardiovascular risk factors, and age-related maculopathy: the Blue Mountains Eye Study. Arch Ophthalmol 116(5):583–587PubMedGoogle Scholar
  278. [278]
    Klein BE, Klein R, Lee KE, Jensen SC (2001. Measures of obesity and age-related eye diseases. Ophthalmic Epidemiol 8(4):251–262PubMedCrossRefGoogle Scholar
  279. [279]
    Delcourt C, Michel F, Colvez A, Lacroux A, Delage M, Vernet MH (2001) Associations of cardiovascular disease and its risk factors with age-related macular degeneration: the POLA study. Ophthalmic Epidemiol 8(4):237–249PubMedCrossRefGoogle Scholar
  280. [280]
    Age-Related Eye Disease Study (2000) Risk factors associated with age-related macular degeneration. A case-control study in the age-related eye disease study: Age-Related Eye Disease Study Report Number 3. Ophthalmology 107(12):2224–2232CrossRefGoogle Scholar
  281. [281]
    Clemons TE, Milton RC, Klein R, Seddon JM, Ferris FL, 3rd. (2005) Risk factors for the incidence of Advanced Age-Related Macular Degeneration in the Age-Related Eye Disease Study (AREDS) AREDS report no. 19. Ophthalmology 112(4):533–539PubMedCrossRefGoogle Scholar
  282. [282]
    Johnson EJ (2005) Obesity, lutein metabolism, and agerelated macular degeneration: a web of connections. Nutr Rev 63(1):9–15PubMedCrossRefGoogle Scholar
  283. [283]
    Seddon JM, Gensler G, Milton RC, Klein ML, Rifai N (2004) Association between C-reactive protein and age-related macular degeneration. JAMA 291(6):704–710PubMedCrossRefGoogle Scholar
  284. [284]
    Klein R, Deng Y, Klein BE, et al. (2007) Cardiovascular disease, its risk factors and treatment, and age-related macular degeneration: Women’s Health Initiative Sight Exam ancillary study. Am J Ophthalmol 143(3):473–483PubMedCrossRefGoogle Scholar
  285. [285]
    Kornzweig AL (1977) Changes in the choriocapillaris associated with senile macular degeneration. Ann Ophthalmol (6):753–756, 759–762Google Scholar
  286. [286]
    Pauleikhoff D, Chen JC, Chisholm IH, Bird AC (1990) Choroidal perfusion abnormality with age-related Bruch’s membrane change. Am J Ophthalmol 109(2):211–217PubMedGoogle Scholar
  287. [287]
    Cackett P, Wong TY, Aung T, et al. (2008) Smoking, cardiovascular risk factors, and age-related macular degeneration in Asians: the Singapore Malay Eye Study. Am J Ophthalmol 146(6):960–967 e961PubMedCrossRefGoogle Scholar
  288. [288]
    Kawasaki R, Wang JJ, Ji GJ, et al. (2008) Prevalence and risk factors for age-related macular degeneration in an adult Japanese population: the Funagata study. Ophthalmology 115(8):1376–1381, 1381 e1371–1372PubMedCrossRefGoogle Scholar
  289. [289]
    Tan JS, Mitchell P, Smith W, Wang JJ (2007) Cardiovascular risk factors and the long-term incidence of age-related macular degeneration: the Blue Mountains Eye Study. Ophthalmology 114(6):1143–1150PubMedCrossRefGoogle Scholar
  290. [290]
    Blumenkranz MS, Russell SR, Robey MG, Kott-Blumenkranz R, Penneys N (1986) Risk factors in age-related maculopathy complicated by choroidal neovascularization. Ophthalmology 93(5):552–558PubMedGoogle Scholar
  291. [291]
    Hogg RE, Woodside JV, Gilchrist SE, et al. (2008) Cardiovascular disease and hypertension are strong risk factors for choroidal neovascularization. Ophthalmology 115(6):1046–1052 e1042PubMedCrossRefGoogle Scholar
  292. [292]
    Klein R, Klein BE, Tomany SC, Cruickshanks KJ (2003) The association of cardiovascular disease with the long-term incidence of age-related maculopathy: the Beaver Dam Eye Study. Ophthalmology 110(6):1273–1280PubMedCrossRefGoogle Scholar
  293. [293]
    van Leeuwen R, Ikram MK, Vingerling JR, Witteman JC, Hofman A, de Jong PT (2003) Blood pressure, atherosclerosis, and the incidence of age-related maculopathy: the Rotterdam Study. Invest Ophthalmol Vis Sci 44(9):3771–3777PubMedCrossRefGoogle Scholar
  294. [294]
    Liu IY, White L, LaCroix AZ (1989) The association of age-related macular degeneration and lens opacities in the aged. Am J Public Health 79(6):765–769PubMedCrossRefGoogle Scholar
  295. [295]
    Klein R, Klein BE, Wang Q, Moss SE (1994) Is age-related maculopathy associated with cataracts? Arch Ophthalmo 112(2):191–196Google Scholar
  296. [296]
    Van Der Schaft TL, Mooy CM, de Bruijn WC, Mulder PG, Pameyer JH, de Jong PT (1994) Increased prevalence of disciform macular degeneration after cataract extraction with implantation of an intraocular lens. Br J Ophthalmol (6):441–445CrossRefGoogle Scholar
  297. [297]
    Armbrecht AM, Findlay C, Aspinall PA, Hill AR, Dhillon B (2003) Cataract surgery in patients with age-related macular degeneration: one-year outcomes. J Cataract Refract Surg 29(4):686–693PubMedCrossRefGoogle Scholar
  298. [298]
    Blair CJ, Ferguson J, Jr. (1979) Exacerbation of senile macular degeneration following cataract extraction. Am J Ophthalmol 87(1):77–83PubMedGoogle Scholar
  299. [299]
    Cugati S, Mitchell P, Rochtchina E, Tan AG, Smith W, Wang JJ (2006) Cataract surgery and the 10–year incidence of agerelated maculopathy: the Blue Mountains Eye Study. Ophthalmology 113(11):2020–2025PubMedCrossRefGoogle Scholar
  300. [300]
    Freeman EE, Munoz B, West SK, Tielsch JM, Schein OD (2003) Is there an association between cataract surgery and age-related macular degeneration? Data from three population-based studies. Am J Ophthalmol 135(6):849–856PubMedCrossRefGoogle Scholar
  301. [301]
    Klein R, Klein BE, Wong TY, Tomany SC, Cruickshanks KJ (2002) The association of cataract and cataract surgery with the longterm incidence of age-related maculopathy: the Beaver Dam eye study. Arch Ophthalmol 120(11):1551–1558PubMedGoogle Scholar
  302. [302]
    Pollack A, Marcovich A, Bukelman A, Oliver M (1996) Agerelated macular degeneration after extracapsular cataract extraction with intraocular lens implantation. Ophthalmology 103(10):1546–1554PubMedGoogle Scholar
  303. [303]
    Sutter FK, Menghini M, Barthelmes D, et al. (2007) Is pseudophakia a risk factor for neovascular age-related macular degeneration? Invest Ophthalmol Vis Sci 48(4):1472–1475PubMedCrossRefGoogle Scholar
  304. [304]
    Wang JJ, Klein R, Smith W, Klein BE, Tomany S, Mitchell P (2003) Cataract surgery and the 5-year incidence of late-stage agerelated maculopathy: pooled findings from the Beaver Dam and Blue Mountains eye studies. Ophthalmology 110(10):1960–1967PubMedCrossRefGoogle Scholar
  305. [305]
    Wang JJ, Mitchell PG, Cumming RG, Lim R (1999) Cataract and age-related maculopathy: the Blue Mountains Eye Study. Ophthalmic Epidemiol 6(4):317–326PubMedCrossRefGoogle Scholar
  306. [306]
    Ho L, Boekhoorn SS, Liana, et al. (2008) Cataract surgery and the risk of aging macula disorder: the rotterdam study. Invest Ophthalmol Vis Sci 49(11):4795–4800PubMedCrossRefGoogle Scholar
  307. [307]
    Chew EY, Sperduto RD, Milton RC, et al. (2009) Risk of advanced age-related macular degeneration after cataract surgery in the Age-Related Eye Disease Study: AREDS report 25. Ophthalmology 116(2):297–303PubMedCrossRefGoogle Scholar
  308. [308]
    Scott WK, Schmidt S, Hauser MA, et al. (2007) Independent effects of complement factor H Y402H polymorphism and cigarette smoking on risk of age-related macular degeneration. Ophthalmology 114(6):1151–1156PubMedCrossRefGoogle Scholar
  309. [309]
    Schaumberg DA, Hankinson SE, Guo Q, Rimm E, Hunter DJ (2007) A prospective study of 2 major age-related macular degeneration susceptibility alleles and interactions with modifiable risk factors. Arch Ophthalmol 125(1):55–62PubMedCrossRefGoogle Scholar
  310. [310]
    Klein ML, Francis PJ, Rosner B, et al. (2008) CFH and LOC387715/ARMS2 genotypes and treatment with antioxidants and zinc for age-related macular degeneration. Ophthalmology 115(6):1019–1025PubMedCrossRefGoogle Scholar
  311. [311]
    Wang JJ, Rochtchina E, Smith W, et al. (2009) Combined effects of complement factor H genotypes, fish consumption, and inflammatory markers on long-term risk for age-related macular degeneration in a cohort. Am J Epidemiol 169(5):633–641PubMedCrossRefGoogle Scholar
  312. [312]
    Francis PJ, George S, Schultz DW, et al. (2007) The LOC387715 gene, smoking, body mass index, environmental associations with advanced age-related macular degeneration. Hum Hered 63(3–4):212–218PubMedGoogle Scholar
  313. [313]
    Neuner B, Wellmann J, Dasch B, et al. (2008) LOC387715, smoking and their prognostic impact on visual functional status in age-related macular degeneration-The Muenster Aging and Retina Study (MARS) cohort. Ophthalmic Epidemiol 15(3):148–154PubMedCrossRefGoogle Scholar
  314. [314]
    Lee SJ, Kim NR, Chin HS (2010) LOC387715/HTRA1 polymorphisms, smoking, and combined effects on exudative agerelated macular degeneration in a Korean population. Clin Experiment Ophthalmol 38(7):698–704PubMedCrossRefGoogle Scholar
  315. [315]
    Wang JJ, Ross RJ, Tuo J, et al. (2008) The LOC387715 polymorphism, inflammatory markers, smoking, and age-related macular degeneration. A population-based case-control study. Ophthalmology 115(4):693–699PubMedCrossRefGoogle Scholar
  316. [316]
    Seitsonen SP, Onkamo P, Peng G, et al. (2008) Multifactor effects and evidence of potential interaction between complement factor H Y402H and LOC387715 A69S in age-related macular degeneration. PLoS ONE 3(12):e3833PubMedCrossRefGoogle Scholar
  317. [317]
    Francis PJ, Zhang H, Dewan A, Hoh J, Klein ML (2008) Joint effects of polymorphisms in the HTRA1, LOC387715/ARMS2, and CFH genes on AMD in a Caucasian population. Mol Vis 14:1395–1400PubMedGoogle Scholar
  318. [318]
    Kaur I, Katta S, Hussain A, et al. (2008) Variants in the 10q26 gene cluster (LOC387715 and HTRA1) exhibit enhanced risk of age-related macular degeneration along with CFH in Indian patients. Invest Ophthalmol Vis Sci 49(5):1771–1776PubMedCrossRefGoogle Scholar
  319. [319]
    Cameron DJ, Yang Z, Gibbs D, et al. (2007) HTRA1 variant confers similar risks to geographic atrophy and neovascular agerelated macular degeneration. Cell Cycle 6(9):1122–1125PubMedCrossRefGoogle Scholar
  320. [320]
    Yoshida T, DeWan A, Zhang H, et al. (2007) HTRA1 promoter polymorphism predisposes Japanese to age-related macular degeneration. Mol Vis 13:545–548PubMedGoogle Scholar
  321. [321]
    Schmidt S, Haines JL, Postel EA, et al. (2005) Joint effects of smoking history and APOE genotypes in age-related macular degeneration. Mol Vis 11:941–949PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Lintje Ho
    • 1
  • Redmer van Leeuwen
    • 1
  • P. T. V. M. de Jong
    • 1
  • Johannes R. Vingerling
    • 1
  • C. C. W. Klaver
    • 1
  1. 1.Erasmus Medical CenterRotterdamNiederlande

Personalised recommendations