Following the Conversation: A More Meaningful Expression of Engagement

  • Cate Huston
  • Michael Weiss
  • Morad Benyoucef
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 78)


Twitter is a relatively recent phenomenon, and the common metric of success is number of followers. Because people use Twitter in a myriad different ways, and the presence of spammers, it is necessary to discover new ways of quantifying success. In this paper, we explore the nature of engagement on Twitter and find the traditional follower/following network to be meaningless in this regard. Building on previous research, we define engagement in terms of interactions using the @ notation, and visualize this as a graph. We then apply clique finding techniques to this graph, to extract a sub-graph of the most important connections in a user’s immediate network.


Twitter influence conversation networks cliques visualization micro-blogging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Java, A., Song, X., Finin, T., Tseng, B.: Why we twitter: An analysis of a microblogging community. In: Zhang, H., Spiliopoulou, M., Mobasher, B., Giles, C.L., McCallum, A., Nasraoui, O., Srivastava, J., Yen, J. (eds.) WebKDD 2007. LNCS, vol. 5439, pp. 118–138. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Ryan, W., Hazlewood, W.R., Makice, K.: Twitterspace: A co-developed display using Twitter to enhance community awareness. In: PDC 2008, pp. 230–234 (2008)Google Scholar
  3. 3.
    Wilson, C., Boe, B., Sala, A., Puttaswamy, K.P.N., Zhao, B.Y.: User interactions in social networks and their implications. In: Proceedings of the Fourth ACM European Conference on Computer Systems, pp. 205–218. ACM, Nuremberg (2009)CrossRefGoogle Scholar
  4. 4.
    Joinson, A.N.: Looking at, looking up or keeping up with people? motives and use of facebook. In: Proceeding of the Twenty-Sixth Annual SIGCHI Conference on Human Factors in Computing Systems, pp. 1027–1036. ACM, Florence (2008)CrossRefGoogle Scholar
  5. 5.
  6. 6.
    O’Reilly, T., Milstein, S.: The Twitter Book. O’Reilly Media, Inc., Sebastopol (2009)Google Scholar
  7. 7.
    Cha, M., Mislove, A., Gummadi, K.P.: A measurement-driven analysis of information propagation in the flickr social network. In: Proceedings of the 18th International Conference on World wide web, pp. 721–730. ACM, Madrid (2009)CrossRefGoogle Scholar
  8. 8.
    Boyd, D.: Tweet, tweet,retweet: Conversational aspects of retweeting ontwitter. In: Proceedings of HICSS-43 (2010)Google Scholar
  9. 9.
    Crawford, K.: Following you: Disciplines of listening in social media. Continuum: Journal of Media &# 38; Cultural Studies 23, 525–535 (2009)CrossRefGoogle Scholar
  10. 10., a simple url shortener,
  11. 11.
    The Science of ReTweets Report | Dan Zarrella,
  12. 12.
    Topsy - A search engine powered by tweets,
  13. 13.
    Newman, M.E.J., Park, J.: Why social networks are different from other types of networks. Physical Review E 68, 36122 (2003)Google Scholar
  14. 14.
    Olfati-Saber, R.: Evolutionary dynamics of behavior in social networks. In: 2007 46th IEEE Conference on Decision and Control, pp. 4051–4056 (2007)Google Scholar
  15. 15.
    Klout - Twitter Analytics - Measuring Influence Across The Social Web,
  16. 16.
    Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., Wiener, J.: Graph structure in the web. Computer Networks 33, 309–320 (2000)CrossRefGoogle Scholar
  17. 17.
    Kleinberg, J.M., Kumar, S.R., Raghavan, P., Rajagopalan, S., Tomkins, A.S.: The web as a graph: Measurements, models, and methods. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 1–17. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  18. 18.
    Huberman, B.A., Romero, D.M., Wu, F.: Social Networks That Matter: Twitter Under the Microscope. In: SSRN eLibrary (December 2008)Google Scholar
  19. 19.
    Golder, S.A., Wilkinson, D.M., Huberman, B.A.: Rhythms of social interaction: Messaging within a massive online network. In: Communities and Technologies 2007: Proceedings of the Third Communities and Technologies Conference, Michigan State University, p. 41 (2007)Google Scholar
  20. 20.
    Preece, J.: Sociability and usability in online communities: determining and measuring success. Behaviour& Information Technology 20, 347–356 (2001)CrossRefGoogle Scholar
  21. 21.
    Loch, C.H., Tyler, J.R., Lukose, R.: Conversational Structure in Email and Face to Face Communication. Draft, submitted to Organization ScienceGoogle Scholar
  22. 22.
    Zhou, W., Sornette, D., Hill, R., Dunbar, R.: Discrete hierarchical organization of social group sizes. Proc. R. Soc. B, 439–444 (2005)Google Scholar
  23. 23.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems 30, 107–117 (1998)CrossRefGoogle Scholar
  24. 24.
    Yardi, S., Romero, D., Schoenebeck, G., boyd, d.: Yardi, Detecting Spam in a Twitter Network,
  25. 25.
    Gibson, D., Kleinberg, J., Raghavan, P.: Inferring web communities from link topologyGoogle Scholar
  26. 26.
    Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Trawling the Web for emerging cyber-communities. Computer Networks 31, 1481–1493 (1999)CrossRefGoogle Scholar
  27. 27.
    Hogg, T., Szabo, G.: Dynamics and diversity of online community activities. EPL (Europhysics Letters) 86, 38003 (2009)Google Scholar
  28. 28.
    Singla, P., Richardson, M.: Yes, there is a correlation: - from social networks to personal behavior on the web. In: Proceeding of the 17th International Conference on World Wide Web, pp. 655–664. ACM, Beijing (2008)CrossRefGoogle Scholar
  29. 29.
    Österg, P.R.J.: A fast algorithm for the maximum clique problem. Discrete Applied Mathematics 120, 197–207 (2002)CrossRefGoogle Scholar
  30. 30.
    Pardalos, P.M., Xue, J.: The maximum clique problem. Journal of Global Optimization 4, 301–328 (1994)CrossRefGoogle Scholar
  31. 31.
    Masuda, S., Nakajima, K., Kashiwabara, T., Fujisawa, T.: Efficient Algorithms for Finding Maximum Cliques of an Overlap Graph (1986)Google Scholar
  32. 32.
    Babel, L.: Finding maximum cliques in arbitrary and in special graphs. Computing 46, 321–341 (1991)CrossRefGoogle Scholar
  33. 33.
    Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks. In: Proceedings of the Twelfth International Conference on Information and Knowledge Management, pp. 556–559 (2003)Google Scholar
  34. 34.
    Hogan, B.J.: Networking in everyday life, University of Toronto (2009)Google Scholar
  35. 35.
    What will (2011), bring for journalism? Clay Shirky predicts widespread disruptions for syndication » Nieman Journalism Lab (2011),

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Cate Huston
    • 1
  • Michael Weiss
    • 2
  • Morad Benyoucef
    • 1
  1. 1.University of OttawaCanada
  2. 2.Carleton UniversityCanada

Personalised recommendations