Skip to main content

Graph Transduction as a Non-cooperative Game

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 6658)

Abstract

Graph transduction is a popular class of semi-supervised learning techniques, which aims to estimate a classification function defined over a graph of labeled and unlabeled data points. The general idea is to propagate the provided label information to unlabeled nodes in a consistent way. In contrast to the traditional view, in which the process of label propagation is defined as a graph Laplacian regularization, here we propose a radically different perspective that is based on game-theoretic notions. Within our framework, the transduction problem is formulated in terms of a non-cooperative multi-player game where any equilibrium of the proposed game corresponds to a consistent labeling of the data. An attractive feature of our formulation is that it is inherently a multi-class approach and imposes no constraint whatsoever on the structure of the pairwise similarity matrix, being able to naturally deal with asymmetric and negative similarities alike. We evaluated our approach on some real-world problems involving symmetric or asymmetric similarities and obtained competitive results against state-of-the-art algorithms.

Keywords

  • Nash Equilibrium
  • Mixed Strategy
  • Pure Strategy
  • Classification Error Rate
  • Consistent Label

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-20844-7_20
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-20844-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   54.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7, 2399–2434 (2006)

    MathSciNet  MATH  Google Scholar 

  2. Breitenbach, M., Grudic, G.Z.: Clustering through ranking on manifolds. In: ICML, pp. 73–80 (2005)

    Google Scholar 

  3. Chapelle, O., Schölkopf, B., Zien, A. (eds.): Semi-Supervised Learning. MIT Press, Cambridge (2006)

    Google Scholar 

  4. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a Nash equilibrium. Commun. ACM 52(2), 89–97 (2009)

    CrossRef  MATH  Google Scholar 

  5. Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. on PAMI 23(6), 643–660 (2001)

    CrossRef  Google Scholar 

  6. Goldberg, A., Zhu, X., Wright, S.: Dissimilarity in graph-based semi-supervised classification. In: AISTATS (2007)

    Google Scholar 

  7. Howson, J.T.: Equilibria of polymatrix games. Management Science 18(5), 312–318 (1972)

    CrossRef  MathSciNet  MATH  Google Scholar 

  8. Janovskaya, E.B.: Equilibrium points in polymatrix games (in Russian) Litovskii Matematicheskii Sbornik 8, 381–384 (1968); (Math. Reviews 39 #3831)

    MATH  Google Scholar 

  9. Joachims, T.: Transductive learning via spectral graph partitioning. In: ICML, pp. 290–297 (2003)

    Google Scholar 

  10. Maynard Smith, J.: Evolution and the theory of games. Cambridge University Press, Cambridge (1982)

    CrossRef  MATH  Google Scholar 

  11. Nash, J.: Non-cooperative games. The Annals of Mathematics 54(2), 286–295 (1951)

    CrossRef  MathSciNet  MATH  Google Scholar 

  12. Pelillo, M.: The dynamics of nonlinear relaxation labeling processes. J. Math. Imaging Vis. 7(4), 309–323 (1997)

    CrossRef  MathSciNet  Google Scholar 

  13. Rota Bulò, S., Bomze, I.M.: Infection and immunization: a new class of evolutionary game dynamics. Games and Economic Behaviour (Special issue in honor of John F. Nash, jr.) 71, 193–211 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Sen, P., Namata, G.M., Bilgic, M., Getoor, L., Gallagher, B., Eliassi-Rad, T.: Collective classification in network data. AI Magazine 29(3), 93–106 (2008)

    CrossRef  Google Scholar 

  15. Tong, W., Jin, R.: Semi-supervised learning by mixed label propagation. In: AAAI, pp. 651–656 (2007)

    Google Scholar 

  16. Weibull, J.W.: Evolutionary Game Theory. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  17. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local and global consistency. In: NIPS, pp. 321–328 (2004)

    Google Scholar 

  18. Zhou, D., Huang, J., Schölkopf, B.: Learning from labeled and unlabeled data on a directed graph. In: ICML, pp. 1036–1043 (2005)

    Google Scholar 

  19. Zhu, X.: Semi-supervised learning literature survey. Tech. Rep. 1530, Computer Sciences, University of Wisconsin-Madison (2005)

    Google Scholar 

  20. Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using Gaussian fields and harmonic functions. In: ICML, pp. 912–919 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Erdem, A., Pelillo, M. (2011). Graph Transduction as a Non-cooperative Game. In: Jiang, X., Ferrer, M., Torsello, A. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2011. Lecture Notes in Computer Science, vol 6658. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20844-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20844-7_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20843-0

  • Online ISBN: 978-3-642-20844-7

  • eBook Packages: Computer ScienceComputer Science (R0)