Skip to main content

Annexins

  • Chapter
  • First Online:

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Annexins are small proteins capable of membrane attachment or insertion. Animal annexins can form Ca2+-permeable conductances in planar lipid bilayers or vesicles. Some have also been implicated in the regulation of cytosolic free calcium. Similar results are now being reported for plant annexins, justifying their consideration as novel components of calcium-signalling networks. Peroxidation of bilayers alters the calcium transport characteristics of plant annexins, suggesting that they could act as intersections between calcium and reactive oxygen-signalling pathways. The ability of plant annexins to bind actin, hydrolyse ATP/GTP and act as peroxidases sets them apart from conventional calcium transporters. Here, their structure and functions are reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agrawal GK, Thelen JJ (2006) Large scale identification and quantitative profiling of phosphoproteins expressed during seed filling in oilseed rape. Mol Cell Proteomics 5:2044–2059

    CAS  PubMed  Google Scholar 

  • Andrawis A, Solomon M, Delmer DP (1993) Cotton fibre annexins: a potential role in the regulation of callose synthase. Plant J 3:763–772

    CAS  PubMed  Google Scholar 

  • Babiychuk EB, Monastyrskaya K, Potez S, Draeger A (2009) Intracellular Ca2+ operates a switch between repair and lysis of streptolysin O-perforated cells. Cell Death Differ 16:1126–1134

    CAS  PubMed  Google Scholar 

  • Balasubramanian K, Bevers EM, Willems GM, Schroit AJ (2001) Binding of annexin V to membrane products of lipid peroxidation. Biochemistry 40:8672–8676

    CAS  PubMed  Google Scholar 

  • Bandorowicz-Pikula J, Kirilenko A, van Deursen R, Golczak M, Kuhnel M, Lancelin JM, Pikula S, Buchet R (2003) A putative consensus sequence for the nucleotide-binding site of annexin A6. Biochemistry 42:9137–9146

    CAS  PubMed  Google Scholar 

  • Bayer EM, Bottrill AR, Walshaw J, Vigouroux M, Naldrett MJ, Thomas CL, Maule AJ (2006) Arabidopsis cell wall proteome defined using multidimensional protein identification technology. Proteomics 6:301–311

    CAS  PubMed  Google Scholar 

  • Berendes R, Voges D, Demange P, Huber R, Burger A (1993) Structure-function analysis of the ion channel selectivity filter in human annexin V. Science 262:427–430

    CAS  PubMed  Google Scholar 

  • Blackbourn HD, Walker JH, Battey NH (1991) Calcium-dependent phospholipid-binding proteins in plants - their characterization and potential for regulating cell-growth. Planta 184:67–73

    CAS  PubMed  Google Scholar 

  • Breton G, Vazquez-Tello A, Danyluk J, Sarhan F (2000) Two novel intrinsic annexins accumulate in wheat membranes in response to low temperature. Plant Cell Physiol 41:177–184

    CAS  PubMed  Google Scholar 

  • Calvert CM, Gant SJ, Bowles DJ (1996) Tomato annexins p34 and p35 bind to F-actin and display nucleotide phosphodiesterase activity inhibited by phospholipid binding. Plant Cell 8:333–342

    CAS  PubMed Central  PubMed  Google Scholar 

  • Campbell NA, Thomson WW (1977) Effects of lanthanum and ethylenediaminetetraacetate on leaf movements of Mimosa. Plant Physiol 60:635–639

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carletti P, Masi A, Spolaore B, De Laureto PP, De Zorzi M, Turetta L, Ferretti M, Nardi S (2008) Protein expression changes in maize roots in response to humic substances. J Chem Ecol 34:804–818

    CAS  PubMed  Google Scholar 

  • Carroll AD, Moyen C, Van Kesteren P, Tooke F, Battey NH, Brownlee C (1998) Ca2+, annexins, and GTP modulate exocytosis from maize root cap protoplasts. Plant Cell 10:1267–1276

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carter C, Pan S, Zouhar J, Avila EL, Girke T, Raikhel NV (2004) The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell 16:3285–3303

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clark GB, Sessions A, Eastburn DJ, Roux SJ (2001) Differential expression of members of the annexin multigene family in Arabidopsis. Plant Physiol 126:1072–1084

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clark G, Roux SJ (2009) Extracellular nucleotides: ancient signaling molecules. Plant Sci 177:239–244

    CAS  Google Scholar 

  • Dabitz N, Hu N-J, Yusof A, Tranter N, Winter A, Daley M, Zschörnig O, Brisson A, Hofmann A (2005) Structural determinants for plant annexin-membrane interactions. Biochemistry 44:16292–16300

    CAS  PubMed  Google Scholar 

  • de Carvalho-Niebel F, Lescure N, Cullimore JV, Gamas P (1998) The Medicago truncatula MtAnn1 gene encoding an annexin is induced by nod factors and during the symbiotic interaction with Rhizobium meliloti. Mol Plant Microbe Interact 11:504–513

    Google Scholar 

  • de Carvalho-Niebel F, Timmers ACJ, Chabaud M, Defaux-Petras A, Barker DG (2002) The Nod factor-elicited annexin MtAnn1 is preferentially localised at the nuclear periphery in symbiotically activated root tissues of Medicago truncatula. Plant J 32:343–352

    PubMed  Google Scholar 

  • Delmer DP, Potikha TS (1997) Structures and functions of annexins in plants. Cell Mol Life Sci 53:546–553

    CAS  PubMed  Google Scholar 

  • Demidchik V, Shang Z, Shin R, Thompson E, Rubio L, Laohavisit A, Mortimer JC, Chivasa S, Slabas AR, Glover BJ, Schachtman DP, Shabala S, Davies JM (2009) Plant extracellular ATP signalling by plasma membrane NADPH oxidase and Ca2+ channels. Plant J 58:903–913

    CAS  PubMed  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH, Mylona A, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    CAS  PubMed  Google Scholar 

  • Friso G, Giacomelli L, Ytterberg AJ, Peltier J-B, Rudella A, Sun Q, van Wijk KJ (2004) In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database. Plant Cell 16:478–499

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gerke V, Moss SE (2002) Annexins: from structure to function. Physiol Rev 82:331–371

    CAS  PubMed  Google Scholar 

  • Gerke V, Creutz CE, Moss SE (2005) Annexins; linking Ca2+ signalling to membrane dyanamics. Nat Rev Mol Cell Biol 6:449–461

    CAS  PubMed  Google Scholar 

  • Giavalisco P, Kapitza K, Kolasa A, Buhtz A, Kehr J (2006) Towards the proteome of Brassica napus phloem sap. Proteomics 6:896–909

    CAS  PubMed  Google Scholar 

  • Gidrol X, Sabelli PA, Fern YS, Kush AK (1996) Annexin-like protein from Arabidopsis thaliana rescues ΔoxyR mutant of Escherichia coli from H2O2 stress. Proc Natl Acad Sci USA 93:11268–11273

    CAS  PubMed  Google Scholar 

  • Golczak M, Kicinska A, Bandorowicz-Pikula J, Buchet R, Szewczyk A, Pikula S (2001) Acidic pH-induced folding of annexin VI is a prerequisite for its insertion into lipid bilayers and formation of ion channels by the protein molecules. FASEB J 16:1083–1085

    Google Scholar 

  • Gorecka KM, Konopka-Postupolska D, Hennig J, Buchet R, Pikula S (2005) Peroxidase activity of annexin 1 from Arabidopsis thaliana. Biochem Biophys Res Commun 336:868–875

    CAS  PubMed  Google Scholar 

  • Gorecka KM, Thouverey C, Buchet R, Pikula S (2007) Potential role of annexin AtANN1 from Arabidopsis thaliana in pH-mediated cellular response to environment stimuli. Plant Cell Physiol 48:792–803

    CAS  PubMed  Google Scholar 

  • Grewal T, Enrich C (2009) Annexins – modulators of EGF receptor signalling and trafficking. Cell Signal 21:847–858

    CAS  PubMed  Google Scholar 

  • Hawkins TE, Merrifield CJ, Moss SE (2000) Calcium signaling and annexins. Cell Biochem Biophys 33:275–296

    CAS  PubMed  Google Scholar 

  • Hayes MJ, Rescher U, Gerke V, Moss SE (2004) Annexin-actin interactions. Traffic 5:571–576

    CAS  PubMed  Google Scholar 

  • Hayes MJ, Shao D, Bailly M, Moss SE (2006) Regulation of actin dynamics by annexin 2. EMBO J 25:1816–1826

    CAS  PubMed  Google Scholar 

  • Hegde BG, Isas JM, Zampighi G, Haigler HT, Langen R (2006) A novel calcium-independent peripheral membrane-bound form of annexin B12. Biochemistry 24:934–942

    Google Scholar 

  • Hofmann A (2004) Annexins in the plant kingdom: perspectives and potentials. Annexins 1:51–61

    CAS  Google Scholar 

  • Hofmann A, Benz J, Liemann S, Huber R (1997) Voltage-dependent binding of annexin V, annexin VI and annexin VII-Core to acidic phospholipid membranes. Biochim Biophys Acta 1330:254–264

    CAS  PubMed  Google Scholar 

  • Hofmann A, Proust J, Dorowski A, Schantz R, Huber R (2000a) Annexin 24 from Capsicum annuum. X-ray structure and biochemical characterization. J Biol Chem 275:8072–8082

    CAS  PubMed  Google Scholar 

  • Hofmann A, Reaguenes-Nicol C, Favier-Perron B, Mesonero J, Huber R, Russo-Marie F, Lewit-Bentley A (2000b) The annexin A3-membrane interaction is modulated by an N-terminal tryptophan. Biochemistry 39:7712–7721

    CAS  PubMed  Google Scholar 

  • Hofmann A, Ruvinov S, Hess S, Schantz R, Delmer DP, Wlodawer A (2002) Plant annexins form calcium-independent oligomers in solution. Protein Sci 11:2033–2040

    CAS  PubMed  Google Scholar 

  • Hofmann A, Delmer DP, Wlodawer A (2003) The crystal structure of annexin Gh1 from Gossypium hirsutum reveals an unusual S3 cluster. Eur J Biochem 270:2557–2564

    CAS  PubMed  Google Scholar 

  • Hoshino D, Hayashi A, Temmei Y, Kanzawa N, Tsuchiya T (2004) Biochemical and immunohistochemical characterization of Mimosa annexin. Planta 219:867–875

    CAS  PubMed  Google Scholar 

  • Hoyal CR, Thomas AP, Forman HJ (1996) Hydroperoxide-induced increases in intracellular calcium due to annexin VI translocation and inactivation of plasma membrane Ca2+-ATPase. J Biol Chem 271:29205–29210

    CAS  PubMed  Google Scholar 

  • Hu N-J, Yusof AM, Winter A, Osman A, Reeve AK, Hofmann A (2008) The crystal structure of calcium-bound annexin Gh1 from Gossypium hirsutum and its implications for membrane binding mechanisms of plant annexins. J Biol Chem 283:18314–18322

    CAS  PubMed  Google Scholar 

  • Huber R, Berendes R, Burger A, Schneider M, Karshikov A, Luecke H, Romisch J, Paques E (1992) Crystal and molecular-structure of human annexin-V after refinement - implications for structure, membrane-binding and ion channel formation of the annexin family of proteins. J Mol Biol 223:683–704

    CAS  PubMed  Google Scholar 

  • Isas JM, Cartailler JP, Sokolov Y, Patel DR, Langen R, Luecke H, Hall JE, Haigler HT (2000) Annexins V and XII insert into bilayers at mildly acidic pH and form ion channels. Biochemistry 39:3015–3022

    CAS  PubMed  Google Scholar 

  • Isas JM, Patel DR, Jao C, Jayasinghe S, Cartailler JP, Haigler HT, Langen R (2003) Global structural changes in annexin 12. The role of phospholipid, Ca2+, and pH. J Biol Chem 278:30227–30234

    CAS  PubMed  Google Scholar 

  • Jami SK, Clark GB, Turlapati SA, Handley C, Roux SJ, Kirti PB (2008) Ectopic expression of an annexin from Brassica juncea confers tolerance to abiotic and biotic stress treatments in transgenic tobacco. Plant Physiol Biochem 46:1019–1030

    CAS  PubMed  Google Scholar 

  • Jones MA, Richmond MJ, Smirnoff N (2006) Analysis of the root hair morphogenesis transcriptome reveals the molecular identity of six genes with roles in root hair development in Arabidopsis. Plant J 45:83–100

    CAS  PubMed  Google Scholar 

  • Kheifets V, Bright R, Inagaki K, Schechtman D, Mochly-Rosen D (2006) Protein kinase Cδ (δPKC) – annexin V interaction: a required step in δPKC translocation and function. J Biol Chem 281:23218–23226

    CAS  PubMed  Google Scholar 

  • Kim S-W, Rhee HJ, Ko J, Kim YJ, Kim HG, Yang JM, Choi EC, Na DS (2001) Inhibition of cytosolic phospholipase A2 by annexin I. J Biol Chem 276:15712–15719

    CAS  PubMed  Google Scholar 

  • Kim YE, Isas JM, Haigler HT, Langen R (2005) A helical hairpin region of soluble Annexin B12 refolds and forms a continuous transmembrane helix at mildly acidic pH. J Biol Chem 280:32398–32404

    CAS  PubMed  Google Scholar 

  • Kirilenko A, Golczak M, Pikula S, Buchet R, Bandorowicz-Pikula J (2002) GTP-induced membrane binding and ion channel activity of annexin VI: Is annexin VI a GTP biosensor? Biophys J 82:2737–2745

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kirilenko A, Pikula S, Bandorowicz-Pikula J (2006) Effects of mutagenesis of W343 in human annexin A6 isoform 1 on its interaction with GTP: nucleotide-induced oligomer formation and ion channel activity. Biochemistry 45:4965–4973

    CAS  PubMed  Google Scholar 

  • Köhler G, Hering U, Zschörnig O, Arnold K (1997) Annexin V interaction with phosphatidylserine-containing vesicles at low and neutral pH. Biochemistry 36:8189–8194

    PubMed  Google Scholar 

  • Konopka-Postupolska D (2007) Annexins: putative linkers in dynamic membrane-cytoskeleton interactions in plant cells. Protoplasma 230:203–215

    CAS  PubMed  Google Scholar 

  • Konopka-Postupolska D, Clark G, Goch G, Debski J, Floras K, Cantero A, Fijolek B, Roux S, Hennig J (2009) The role of annexin 1 in drought stress in Arabidopsis. Plant Physiol 150:1394–1410

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kourie JI, Wood HB (2000) Biophysical and molecular properties of annexin –formed channels. Progr Biophys Mol Biol 73:91–134

    CAS  Google Scholar 

  • Kovács I, Ayaydin F, Oberschall A, Ipacs I, Bottka S, Pongor S, Dudits D, Toth EC (1998) Immunolocalization of a novel annexin-like protein encoded by a stress and abscisic acid responsive gene in alfalfa. Plant J 15:185–197

    PubMed  Google Scholar 

  • Kubista H, Hawkins TE, Moss SE (1999) Annexin V mediates a peroxide-induced Ca2+-influx in B-cells. Curr Biol 9:1403–1406

    CAS  PubMed  Google Scholar 

  • Kwon H-K, Yokoyama R, Nishitani K (2005) A proteomic approach to apoplastic proteins involved in cell wall regeneration in protoplasts of Arabidopsis suspension-cultured cells. Plant Cell Physiol 46:843–857

    CAS  PubMed  Google Scholar 

  • Ladokhin AS, Haigler HT (2005) Reversible transition between the surface trimer and membrane-inserted monomer of annexin 12. Biochemistry 44:3402–3409

    CAS  PubMed  Google Scholar 

  • Ladokhin AS, Isas JM, Haigler HT, White SH (2002) Determining the membrane topology of proteins: insertion pathway of a transmembrane helix of annexin 12. Biochemistry 41:13617–13626

    CAS  PubMed  Google Scholar 

  • Langen R, Isas JM, Hubbell WL, Haigler HT (1998) A transmembrane form of annexin XII detected by site-directed spin labelling. Proc Natl Acad Sci USA 95:14060–14065

    CAS  PubMed  Google Scholar 

  • Laohavisit A (2009) Calcium-permeable cation channel formation by plant annexins. PhD Thesis, University of Cambridge, UK

    Google Scholar 

  • Laohavisit A, Davies JM (2009) Multifunctional annexins. Plant Sci 177:532–539

    CAS  Google Scholar 

  • Laohavisit A, Demidichik V, Mortimer JC, Coxon KM, Stancombe M, Brownlee C, Webb AAR, Hofmann A, Miedema H, Battey NH, Davies JM (2009) Zea mays annexins modulate cytosolic free Ca2+ and generate a Ca2+-permeable conductance. Plant Cell 21:479–493

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee S, Lee EJ, Yang EJ, Lee JE, Park AR, Song WH, Park OK (2004) Proteomic identification of annexins, calcium-dependent membrane binding protein that mediate osmotic stress and abscisic acid signal transduction in Arabidopsis. Plant Cell 16:1378–1391

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lefebvre B, Furt F, Hartmann M-A, Michaelson LV, Carde J-P, Sargueil-Boiron F, Rossignol M, Napier JA, Cullimore J, Bessoule J-J, Mongrand S (2007) Characterization of lipid rafts from Medicago truncatula root plasma membranes: a proteomic study reveals the presence of a raft-associated redox system. Plant Physiol 144:402–418

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liemann S, Benz J, Burger A, Voges D, Hofmann A, Huber R, Göttig P (1996) Structural and functional characterisation of the voltage sensor in the ion channel human annexin V. J Mol Biol 258:555–561

    CAS  PubMed  Google Scholar 

  • Lim EK, Roberts MR, Bowles DJ (1998) Biochemical characterization of tomato annexin p35-Independence of calcium binding and phosphatase activities. J Biol Chem 273:34920–34925

    CAS  PubMed  Google Scholar 

  • Lindermayr C, Saalbach G, Durner J (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137:921–930

    CAS  PubMed Central  PubMed  Google Scholar 

  • McClung AD, Carroll AD, Battey NH (1994) Identification and characterization of ATPase activity associated with maize (Zea mays) annexins. Biochem J 30:709–712

    Google Scholar 

  • Monastyrskaya K, Babiychuk EB (2009) The annexins: spatial and temporal coordination of signaling events during cellular stress. Cell Mol Life Sci 66:2623–2642

    CAS  PubMed  Google Scholar 

  • Montaville P, Neumann JM, Russo-Marie F, Ochsenbein F, Sanson A (2002) A new consensus sequence for phosphatidylserine recognition by annexins. J Biol Chem 277:24684–24693

    CAS  PubMed  Google Scholar 

  • Morgan RO, Martin-Almedina S, Garcia M, Jhoncon-Kooyip J, Fernadez M (2006) Deciphering function and mechanism of calcium-binding proteins from their evolutionary imprints. Biochim Biophys Acta 1763:1238–1249

    CAS  PubMed  Google Scholar 

  • Mortimer JC, Laohavisit A, Macpherson N, Webb AAAR, Brownlee C, Battey NH, Davies JM (2008) Annexins: multi-functional components of growth and adaptation. J Exp Bot 59:533–544

    CAS  PubMed  Google Scholar 

  • Mortimer JC, Coxon KM, Laohavisit A, Davies JM (2009) Heme-independent soluble and membrane-associated peroxidase activity of a Zea mays annexin preparation. Plant Signal Behav 4:428–430

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moss SE, Morgan RO (2004) The annexins. Genome Biol 5:1–8

    Google Scholar 

  • Neumann E, Siemens PM, Toensing K (2000) Electroporative fast pore-flickering of the annexin V–lipid surface complex, a novel gating concept for ion transport. Biophys Chem 86:203–220

    CAS  PubMed  Google Scholar 

  • Patel DR, Jao CC, Mailliard WS, Isas JM, Langen R, Haigler HT (2001) Calcium-dependent binding of annexin 12 to phospholipid bilayers: stoichiometry and implications. Biochemistry 40:7054–7060

    CAS  PubMed  Google Scholar 

  • Patel DR, Isas JM, Ladokhin AS, Jao CC, Kim YE, Kirsch T, Langen R, Haigler HT (2005) The conserved core domains of annexins A1, A2, A5, and B12 can be divided into two groups with different Ca2+-dependent membrane-binding properties. Biochemistry 44:2833–2844

    CAS  PubMed  Google Scholar 

  • Plant PJ, Lafont F, Lecat S, Verkade P, Simons K, Rotin D (2000) Apical membrane targeting of Nedd4 is mediated by an association of its C2 domain with annexin XIIIb. J Cell Biol 149:1473–1483

    CAS  PubMed  Google Scholar 

  • Pollard HB, Rojas E (1988) Ca2+-activated synexin forms highly selective, voltage-gated Ca2+ channels in phosphatidylserine bilayer membranes. Proc Natl Acad Sci USA 85:2974–2978

    CAS  PubMed  Google Scholar 

  • Proust J, Houlné G, Schantz M-L, shen W-H, Schantz R (1999) Regulation of biosynthesis and cellular localization of Sp32 annexins in tobacco BY2 cells. Plant Mol. Biol 39:361–372

    CAS  PubMed  Google Scholar 

  • Rohila JS, Chen M, Chen S, Chen J, Cerny R, Dardick C, Canlas P, Xu X, Gribskov M, Kanrar S, Zhu J-K, Ronald P, Fromm ME (2006) Protein–protein interactions of tandem affinity purification-tagged protein kinases in rice. Plant J 46:1–13

    CAS  PubMed  Google Scholar 

  • Rosengarth A, Wintergalen A, Galla H-J, Hinz H-J, Gerke V (1998) Ca2+-independent interaction of annexin I with phospholipid monolayers. FEBS Lett 438:279–284

    CAS  PubMed  Google Scholar 

  • Rudella A, Friso G, Alonso JM, Ecker JR, van Wijk KJ (2006) Downregulation of ClpR2 leads to reduced accumulation of the ClpPRS protease complex and defects in chloroplast biogenesis in Arabidopsis. Plant Cell 18:1704–1721

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santoni V, Rouquie D, Doumas P, Mansion M, Boutry M, Degand H, Dupree P, Packman L, Sherrier J, Prime T, Bauw G, Posada E, Rouze P, Dehais P, Sahnoun I, Barlier I, Rossignol M (1998) Use of a proteome strategy for tagging proteins present at the plasma membrane. Plant J 16:633–641

    CAS  PubMed  Google Scholar 

  • Schoonheim PJ, Veiga H, da Costa PD, Friso G, van Wijk KJ, de Boer AH (2007) A comprehensive analysis of the 14-3-3 interactome in barley leaves using a complementary proteomics and two-hybrid approach. Plant Physiol 143:670–683

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seals DF, Randall SK (1997) A vacuole-associated annexin protein, VCaB42, correlates with the expansion of tobacco cells. Plant Physiol 115:753–761

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seigneurin-Berny D, Rolland N, Dorne AJ, Joyard J (2000) Sulfolipid is a potential candidate for annexin binding to the outer surface of chloroplast. Biochem Biophys Res Commun 272:519–524

    CAS  PubMed  Google Scholar 

  • Shang Z, Laohavisit A, Davies JM (2009) Extracellular ATP activates an Arabidopsis plasma membrane Ca2+-permeable conductance. Plant Signal Behav 4:989–991

    PubMed Central  PubMed  Google Scholar 

  • Shin HS, Brown RM (1999) GTPase activity and biochemical characterization of a recombinant cotton fiber annexin. Plant Physiol 119:925–934

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smallwood M, Keen JN, Bowles DJ (1990) Purification and partial sequence analysis of plant annexins. Biochem J 270:157–161

    CAS  PubMed  Google Scholar 

  • Sohma H, Creutz CE, Gasa S, Ohkawa H, Akino T, Kuroki Y (2001) Differential lipid specificities of the repeated domains of annexin IV. Biochim Biophys Acta 1546:205–215

    CAS  PubMed  Google Scholar 

  • Song G, Harding SE, Duchen MR, Tunwell R, O’Gara P, Hawkins TE, Moss SE (2002) Altered mechanical properties and intracellular calcium signaling in cardiomyocytes from annexin 6 null-mutant mice. FASEB J 16:622–624

    CAS  PubMed  Google Scholar 

  • Talukdar T, Gorecka KM, de Carvalho-Niebel F, Downie JA, Cullimore J, Pikula S (2009) Annexins- calcium-and membrane-binding proteins in the plant kingdom. Potential role in nodulation and mycorrhization in Medicago truncatula. Acta Biochim Pol 56:199–210

    CAS  PubMed  Google Scholar 

  • Thonat C, Mathieu C, Crevecoeur M, Penel C, Gaspar T, Boyer N (1997) Effects of a mechanical stimulation of localization of annexin-like proteins in Bryonia dioica internodes. Plant Physiol 114:981–988

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang W, Xu J, Kirsch T (2003) Annexin-mediated Ca2+ influx regulates growth plate chondrocyte maturation and apoptosis. J Biol Chem 278:3762–3769

    CAS  PubMed  Google Scholar 

  • Watson WD, Srivastava M, Leighton X, Glasman M, Faraday M, Fossman LH, Pollard HB, Verma A (2004) Annexin 7 mobilises calcium from endoplasmic reticulum stores in brain. Biochim Biophys Acta 1742:151–160

    CAS  PubMed  Google Scholar 

  • Yang Y, Xu S, An L, Chen N (2007) NADPH oxidase-dependent hydrogen peroxide production, induced by salinity stress, may be involved in the regulation of total calcium in roots of wheat. J Plant Physiol 164:1429–1435

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the University of Cambridge Brookes Fund and Cambridge Overseas Trusts for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia M. Davies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Laohavisit, A., Davies, J.M. (2011). Annexins. In: Luan, S. (eds) Coding and Decoding of Calcium Signals in Plants. Signaling and Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20829-4_8

Download citation

Publish with us

Policies and ethics