Small Supernumerary Marker Chromosomes in Genetic Diagnostics and Counseling



Generally, small supernumerary marker chromosomes (sSMC) are detected in four groups of patients: (1) prenatally studied ones (with and without sonographic abnormalities), (2) postnatally examined adults with fertility problems, (3) children and adults with unclear mental retardation, developmental delay, and/or dysmorphism, and (4) patients in which sSMC can be a secondary finding when cytogenetic analysis is done for other reasons. According to the relative rareness, and as it is impossible to do a directed search for a person with sSMC, the detection of such an additional marker is always surprising and unexpected for the cytogenetic laboratory performing the analysis. Here possibilities and means of sSMC diagnostics, some personal experiences of patients receiving the diagnosis of sSMC, and a short section on sSMC in genetic counseling are provided.


Genetic Counseling Down Syndrome Turner Syndrome Nucleolar Organize Region Acrocentric Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahn JW, Mann K, Walsh S, Shehab M, Hoang S, Docherty Z, Mohammed S, Mackie Ogilvie C (2010) Validation and implementation of array comparative genomic hybridisation as a first line test in place of postnatal karyotyping for genome imbalance. Mol Cytogenet 3:9PubMedCrossRefGoogle Scholar
  2. Backx L, Van Esch H, Melotte C, Kosyakova N, Starke H, Frijns JP, Liehr T, Vermeesch JR (2007) Array painting using microdissected chromosomes to map chromosomal breakpoints. Cytogenet Genome Res 116:158–166PubMedCrossRefGoogle Scholar
  3. Baldwin EL, May LF, Justice AN, Martin CL, Ledbetter DH (2008) Mechanisms and consequences of small supernumerary marker chromosomes: from Barbara McClintock to modern genetic-counseling issues. Am J Hum Genet 82:398–410PubMedCrossRefGoogle Scholar
  4. Bloom SE, Goodpasture C (1975) An improved technique for selective silver staining of nucleolar organizer regions in human chromosomes. Hum Genet 34:199–206CrossRefGoogle Scholar
  5. Deutsche Gesellschaft für Humangenetik (GfH), Berufsverband Deutscher Humangenetiker e.V. (BVDH) (2007) Genetische Beratung. Medgen 19:452–454CrossRefGoogle Scholar
  6. Fickelscher I, Starke H, Schulze E, Ernst G, Kosyakova N, Mkrtchyan H, Macdermont K, Sebire N, Liehr T (2007) A further case with a small supernumerary marker chromosome (sSMC) derived from chromosome 1-evidence for high variability in mosaicism in different tissues of sSMC carriers. Prenat Diagn 27:783–785PubMedCrossRefGoogle Scholar
  7. Fraga MF, Esteller M (2002) DNA methylation: a profile of methods and applications. Biotechniques 33:632, 634, 636–649PubMedGoogle Scholar
  8. Köhler H, Merkel A, Schmitt U, Zypries B, Scholz O (2009) Gesetz über genetische Untersuchungen beim Menschen (Gendiagnostikgesetz – GenDG) vom 31. Juli 2009. Bundesgesetzblatt I, 50:2529–2538Google Scholar
  9. Kristoffersson U (2008) Regulatory issues for genetic testing in clinical practice. Mol Biotechnol 40:113–117PubMedCrossRefGoogle Scholar
  10. Kristoffersson U, Schmidtke J, Cassiman JJ (2010) Quality issues in clinical genetic services. Springer, BerlinCrossRefGoogle Scholar
  11. Liehr T (ed) (2009a) Fluorescence in situ hybridization (FISH): application guide. Springer, BerlinGoogle Scholar
  12. Liehr T (2009b) Small supernumerary marker chromosomes (sSMCs): a spotlight on some nomenclature problems. J Histochem Cytochem 57:991–993PubMedCrossRefGoogle Scholar
  13. Liehr T (2010) Cytogenetic contribution to uniparental disomy (UPD). Mol Cytogenet 3:8PubMedCrossRefGoogle Scholar
  14. Liehr T (2011a) The sSMC homepage. Cited 10 Jan 2011
  15. Liehr T (2011a) Homepage on multicolor fluorescence in situ hybridization (mFISH) literature. Cited 10 Jan 2011
  16. Liehr T (2011b) Homepage on Cases with uniparental disomy (UPD). Cited 10 Jan 2011
  17. Liehr T, Starke H, Heller A, Kosyakova N, Mrasek K, Gross M, Karst C, Steinhaeuser U, Hunstig F, Fickelscher I, Kuechler A, Trifonov V, Romanenko SA, Weise A (2006a) Multicolor fluorescence in situ hybridization (FISH) applied for FISH-banding. Cytogenet Genome Res 114:240–244PubMedCrossRefGoogle Scholar
  18. Liehr T, Utine GE, Trautmann U, Rauch A, Kuechler A, Pietrzak J, Bocian E, Kosyakova N, Mrasek K, Boduroglu K, Weise A, Aktas D (2007a) Neocentric small supernumerary marker chromosomes (sSMC): three more cases and review of the literature. Cytogenet Genome Res 118:31–37PubMedCrossRefGoogle Scholar
  19. Liehr T, Mrasek K, Hinreiner S, Reich D, Ewers E, Bartels I, Seidel J, Emmanuil N, Petesen M, Polityko A, Dufke A, Iourov I, Trifonov V, Vermeesch J, Weise A (2007b) Small supernumerary marker chromosomes (sSMC) in patients with a 45, X/46, X,+mar karyotype: 17 new cases and a review of the literature. Sex Dev 1:353–362PubMedCrossRefGoogle Scholar
  20. Liehr T, Ewers E, Kosyakova N, Klaschka V, Rietz F, Wagner R, Weise A (2009) How to handle small supernumerary marker chromosomes in prenatal diagnostics. Expert Rev Mol Diagn 9:317–324PubMedCrossRefGoogle Scholar
  21. Medne L, Zackai EH, Emanuel BS (2010) Emanuel Syndrome. In: Pagon RA, Bird TC, Dolan CR, Stephens K, editors. GeneReviews [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2007 Apr 20 [updated 2010 May 11].Google Scholar
  22. Nietzel A, Rocchi M, Starke H, Heller A, Fiedler W, Wlodarska I, Loncarevic IF, Beensen V, Claussen U, Liehr T (2001) A new multicolor-FISH approach for the characterization of marker chromosomes: centromere-specific multicolor-FISH (cenM-FISH). Hum Genet 108:199–204PubMedCrossRefGoogle Scholar
  23. Nietzel A, Albrecht B, Starke H, Heller A, Gillessen-Kaesbach G, Claussen U, Liehr T (2003) Partial hexasomy 15pter–>15q13 including SNRPN and D15S10: first molecular cytogenetically proven case report. J Med Genet 40:e28PubMedCrossRefGoogle Scholar
  24. Pardue ML, Gall JG (1970) Chromosomal localization of mouse satellite DNA. Science 168:1356–1358PubMedCrossRefGoogle Scholar
  25. Pietrzak J, Mrasek K, Obersztyn E, Stankiewicz P, Kosyakova N, Weise A, Cheung SW, Cai WW, von Eggeling F, Mazurczak T, Bocian E, Liehr T (2007) Molecular cytogenetic characterization of eight small supernumerary marker chromosomes originating from chromosomes 2, 4, 8, 18, and 21 in three patients. J Appl Genet 48:167–175PubMedCrossRefGoogle Scholar
  26. Schröck E, du Manoir S, Veldman T, Schoell B, Wienberg J, Ferguson-Smith MA, Ning Y, Ledbetter DH, Bar-Am I, Soenksen D, Garini Y, Ried T (1996) Multicolor spectral karyotyping of human chromosomes. Science 273:494–497PubMedCrossRefGoogle Scholar
  27. Seabright M (1971) A rapid banding technique for human chromosomes. Lancet 2:971–972PubMedCrossRefGoogle Scholar
  28. Speicher MR, Gwyn Ballard S, Ward DC (1996) Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet 12:368–375PubMedCrossRefGoogle Scholar
  29. Starke H, Raida M, Trifonov V, Clement JH, Loncarevic IF, Heller A, Bleck C, Nietzel A, Rubtsov N, Claussen U, Liehr T (2001) Molecular cytogenetic characterization of an acquired minute supernumerary marker chromosome as the sole abnormality in a case clinically diagnosed as atypical Philadelphia-negative chronic myelogenous leukaemia. Br J Haematol 113:435–438PubMedCrossRefGoogle Scholar
  30. Starke H, Seidel J, Henn W, Reichardt S, Volleth M, Stumm M, Behrend C, Sandig KR, Kelbova C, Senger G, Albrecht B, Hansmann I, Heller A, Claussen U, Liehr T (2002) Homologous sequences at human chromosome 9 bands p12 and q13-21.1 are involved in different patterns of pericentric rearrangements. Eur J Hum Genet 10:790–800PubMedCrossRefGoogle Scholar
  31. Tabor HK, Cho MK (2007) Ethical implications of array comparative genomic hybridization in complex phenotypes: points to consider in research. Genet Med 9:626–631PubMedCrossRefGoogle Scholar
  32. Trifonov V, Seidel J, Starke H, Martina P, Beensen V, Ziegler M, Hartmann I, Heller A, Nietzel A, Claussen U, Liehr T (2003) Enlarged chromosome 13 p-arm hiding a cryptic partial trisomy 6p22.2-pter. Prenat Diagn 23:427–430PubMedCrossRefGoogle Scholar
  33. Tsuchiya KD, Opheim KE, Hannibal MC, Hing AV, Glass IA, Raff ML, Norwood T, Torchia BA (2008) Unexpected structural complexity of supernumerary marker chromosomes characterized by microarray comparative genomic hybridization. Mol Cytogenet 1:7PubMedCrossRefGoogle Scholar
  34. von Eggeling F, Hoppe C, Bartz U, Starke H, Houge G, Claussen U, Ernst G, Kotzot D, Liehr T (2002) Maternal uniparental disomy 12 in a healthy girl with a 47, XX,+der(12)(:p11–>q11:)/46, XX karyotype. J Med Genet 39:519–521CrossRefGoogle Scholar
  35. Weber JL (1990) Human DNA polymorphisms and methods of analysis. Curr Opin Biotechnol 1:166–171PubMedCrossRefGoogle Scholar
  36. Weise A, Mrasek K, Fickelscher I, Claussen U, Cheung SW, Cai WW, Liehr T, Kosyakova N (2008a) Molecular definition of high-resolution multicolor banding probes: first within the human DNA sequence anchored FISH banding probe set. J Histochem Cytochem 56:487–493PubMedCrossRefGoogle Scholar
  37. Weise A, Gross M, Mrasek K, Mkrtchyan H, Horsthemke B, Jonsrud C, Von Eggeling F, Hinreiner S, Witthuhn V, Claussen U, Liehr T (2008b) Parental-origin-determination fluorescence in situ hybridization distinguishes homologous human chromosomes on a single-cell level. Int J Mol Med 21:189–200PubMedGoogle Scholar
  38. Zhou X, Rao NP, Cole SW, Mok SC, Chen Z, Wong DT (2005) Progress in concurrent analysis of loss of heterozygosity and comparative genomic hybridization utilizing high density single nucleotide polymorphism arrays. Cancer Genet Cytogenet 159:53–57PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut für HumangenetikUniversitätsklinikum JenaJenaGermany

Personalised recommendations