Skip to main content

Use of Paleontological and Phylogenetic Data in Comparative and Paleobiological Analyses: A Few Recent Developments

  • Chapter
  • First Online:

Abstract

Comparative biology has progressed tremendously but unevenly in the last decades, through incorporation of methodological progress in phylogenetics and in statistical methods that incorporate phylogenetic data into statistical analyses of character correlation or evolution. This review presents a few methods of general interest to comparative biologists, such as phylogenetic independent contrasts (PIC) and variance partition with phylogenetic eigenvector regression. In evo-devo, heterochrony detection has usually been done using event pairing, in the last decade. That method uses a topology, but does not exploit branch length information. A recently proposed method based on squared-change parsimony and PIC exploits both topology and branch lengths, and it outperforms event pairing. Molecular evolution can also benefit from a phylogenetic perspective, as shown in recent studies on genome size evolution. In paleobiology, phylogenies are still rarely and often incompletely incorporated in analyses. Recent developments facilitate time-tree compilations and the combination of paleontological and molecular age data, and new branch length transformation methods can help to standardize PIC, to determine if the characters evolved according to a Brownian motion model, and to deal with clades about which no age information is available.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Benton MJ (ed) (1993) Fossil record 2. Chapman & Hall, London

    Google Scholar 

  • Benton MJ, Donoghue PCJ (2007) Paleontological evidence to date the tree of life. Mol Biol Evol 24:26–53

    Article  PubMed  CAS  Google Scholar 

  • Bruggeman J, Heringa J, Brand BW (2009) PhyloPars: estimation of missing parameter values using phylogeny. Nucleic Acids Res 37:W179–W184

    Article  PubMed  CAS  Google Scholar 

  • Butler RJ, Goswami A (2008) Body size evolution in Mesozoic birds: little evidence for Cope’s rule. J Evol Biol 21:1673–1682

    Article  PubMed  CAS  Google Scholar 

  • Canoville A, Laurin M (2010) Evolution of humeral microanatomy and lifestyle in amniotes, and some comments on paleobiological inferences. Biol J Linn Soc 100:384–406

    Article  Google Scholar 

  • Careau V, Morand-Ferron J, Thomas D (2007) Basal metabolic rate of canidae from hot deserts to cold arctic climates. J Mammal 88:394–400

    Article  Google Scholar 

  • Cubo J, Ponton F, Laurin M, de Margerie E, Castanet J (2005) Phylogenetic signal in bone microstructure of sauropsids. Syst Biol 54:562–574

    Article  PubMed  CAS  Google Scholar 

  • Cubo J, Legendre P, de Ricqlès A, Montes L, de Margerie E, Castanet J, Desdevises Y (2008) Phylogenetic, functional, and structural components of variation in bone growth rate of amniotes. Evol Dev 10:217–227

    Article  PubMed  Google Scholar 

  • Davis MC, Dahn RD, Shubin NH (2007) An autopodial-like pattern of Hox expression in the fins of a basal actinopterygian fish. Nature 444:473–477

    Article  Google Scholar 

  • de Buffrénil V, Rage J-C (1993) La “pachyostose” vertébrale de Simoliophis (Reptilia, Squamata): données comparatives et considérations fonctionnelles. Ann Paléontol 79(4):315–335

    Google Scholar 

  • Desdevises Y, Legendre P, Azouzi L, Morand S (2003) Quantifying phylogenetically structured environmental variation. Evolution 57:2467–2652

    Google Scholar 

  • Diniz-Filho JAF, de Sant’Ana CER, Bini LM (1998) An eigenvector method for estimating phylogenetic inertia. Evolution 52:1247–1262

    Article  Google Scholar 

  • Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10

    Article  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetics analysis and comparative data: a test and review of evidence. Am Nat 160:712–726

    Article  PubMed  CAS  Google Scholar 

  • Germain D, Laurin M (2009) Evolution of ossification sequences in salamanders and urodele origins assessed through event-pairing and new methods. Evol Dev 11:170–190

    Article  PubMed  Google Scholar 

  • Gittleman JL, Kot M (1990) Adaptation: statistics and a null model for estimating phylogenetic effects. Syst Zool 39:227–241

    Article  Google Scholar 

  • Grafen A (1989) The phylogenetic regression. Philos Trans R Soc Lond B 326:119–157

    Article  CAS  Google Scholar 

  • Hedges SB, Kumar S (eds) (2009) The timetree of life. Oxford University Press, New York

    Google Scholar 

  • Hennig W (1965) Phylogenetic systematics. Annu Rev Entomol 10:97–116

    Article  Google Scholar 

  • Hone DWE, Dyke GJ, Haden M, Benton MJ (2008) Body size evolution in Mesozoic birds. J Evol Biol 21:618–624

    Article  PubMed  CAS  Google Scholar 

  • Jeffery JE, Richardson MK, Coates MI, Bininda-Emonds ORP (2002) Analyzing developmental sequences within a phylogenetic framework. Syst Biol 51:478–491

    Article  PubMed  Google Scholar 

  • Jeffery JE, Bininda-Emonds ORP, Coates MI, Richardson MK (2005) A new technique for identifying sequence heterochrony. Syst Biol 54:230–240

    Article  PubMed  Google Scholar 

  • Josse S, Moreau T, Laurin M (2006) Stratigraphic tools for Mesquite. http://mesquiteproject.org/packages/stratigraphicTools/

  • Lamarck JB (1809) Philosophie zoologique. Flammarion, Paris

    Google Scholar 

  • Laurin M (2004) The evolution of body size, Cope’s rule and the origin of amniotes. Syst Biol 53:594–622

    Article  PubMed  Google Scholar 

  • Laurin M (2010a) Assessment of the relative merits of a few methods to detect evolutionary trends. Syst Biol 59:689–704

    Article  PubMed  Google Scholar 

  • Laurin M (2010b) How vertebrates left the water. University of California Press, Berkeley

    Book  Google Scholar 

  • Laurin M, Girondot M, de Ricqlès A (2000) Early tetrapod evolution. Trends Ecol Evol 15:118–123

    Article  PubMed  Google Scholar 

  • Laurin M, Canoville A, Quilhac A (2009) Use of paleontological and molecular data in supertrees for comparative studies: the example of lissamphibian femoral microanatomy. J Anat 215:110–123

    Article  PubMed  Google Scholar 

  • Marjanović D, Laurin M (2007) Fossils, molecules, divergence times, and the origin of lissamphibians. Syst Biol 56:369–388

    Article  PubMed  Google Scholar 

  • Martins EP, Hansen TF (1997) Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am Nat 149:646–667

    Article  Google Scholar 

  • Martins EP, Diniz-Filho JAF, Housworth EA (2002) Adaptative constraints and the phylogenetic comparative method: a computer simulation test. Evolution 56:1–13

    PubMed  Google Scholar 

  • Mayr E (1982) The growth of biological thought—diversity, evolution, and inheritance. The Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  • McShea DW (1996) Metazoan complexity and evolution: Is there a trend? Evolution 50:477–492

    Article  Google Scholar 

  • Midford P, Garland TJ, Maddison WP (2008) PDAP package for Mesquite. http://mesquiteproject.org/pdap_mesquite/index.html

  • Organ CL, Canoville A, Reisz RR, Laurin M (2011) Paleogenomic data suggest mammal-like genome size in the ancestral amniote and derived large genome size in amphibians. J Evol Biol 24:372–380

    Article  PubMed  CAS  Google Scholar 

  • Pagel M (1997) Inferring evolutionary processes from phylogenies. Zoolog Scr 26:331–348

    Article  Google Scholar 

  • Pagel M, Meade A (2006) BayesTraits. http://www.evolution.rdg.ac.uk/BayesTraits.html

  • Pouydebat E, Laurin M, Gorce P, Bels V (2008) Evolution of grasping among anthropoids. J Evol Biol 21:1732–1743

    Article  PubMed  CAS  Google Scholar 

  • Purvis A, Gittleman JL, Luh H-K (1994) Truth or consequences: effects of phylogenetic accuracy on two comparative methods. J Theor Biol 167:293–300

    Article  Google Scholar 

  • Rodríguez-Trelles F, Tarrío R, Ayala FJ (2002) A methodological bias toward overestimation of molecular evolutionary time scales. Proc Natl Acad Sci USA 99:8112–8115

    Article  PubMed  Google Scholar 

  • Roelants K, Gower DJ, Wilkinson M, Loader SP, Biju SD, Guillaume K, Moriau L, Bossuyt F (2007) Global patterns of diversification in the history of modern amphibians. Proc Natl Acad Sci USA 104:887–892

    Article  PubMed  CAS  Google Scholar 

  • Romer AS (1958) Tetrapod limbs and early tetrapod life. Evolution 12:365–369

    Article  Google Scholar 

  • San Mauro D, Vences M, Alcobendas M, Zardoya R, Meyer A (2005) Initial diversification of living amphibians predated the breakup of Pangaea. Am Nat 165:590–599

    Article  PubMed  Google Scholar 

  • Sanderson MJ (1997) A nonparametric approach to estimating divergence times in the absence of rate constancy. Mol Biol Evol 14:1218–1231

    Article  CAS  Google Scholar 

  • Sanderson MJ (2002) Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol Biol Evol 19:101–109

    Article  PubMed  CAS  Google Scholar 

  • Schoch RR (2006) Skull ontogeny: developmental patterns of fishes conserved across major tetrapod clades. Evol Dev 8:524–536

    Article  PubMed  Google Scholar 

  • Schoch RR, Carroll RL (2003) Ontogenetic evidence for the Paleozoic ancestry of salamanders. Evol Dev 5:314–324

    Article  PubMed  Google Scholar 

  • Smith KK (1997) Comparative patterns of craniofacial development in eutherian and metatherian mammals. Evolution 51:1663–1678

    Article  Google Scholar 

  • Sordino P, van der Hoeven F, Duboule D (1995) Hox gene expression in teleost fins and the origin of vertebrate digits. Nature 375:678–681

    Article  PubMed  CAS  Google Scholar 

  • Thorne JL, Kishino H (2002) Divergence time and evolutionary rate estimation with multilocus data. Syst Biol 51:689–702

    Article  PubMed  Google Scholar 

  • Zhang P, Zhou H, Chen Y-Q, Liu Y-F, Qu L-H (2005) Mitogenomic perspectives on the origin and phylogeny of living amphibians. Syst Biol 54:391–400

    Article  PubMed  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Molecules as documents of evolutionary history. J Theor Biol 8:357–366

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Pierre Pontarotti for inviting me to participate in this symposium and in this volume, and for his patience while waiting for this draft. Eli Amson provided comments that improved the draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Laurin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Laurin, M. (2011). Use of Paleontological and Phylogenetic Data in Comparative and Paleobiological Analyses: A Few Recent Developments. In: Pontarotti, P. (eds) Evolutionary Biology – Concepts, Biodiversity, Macroevolution and Genome Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20763-1_8

Download citation

Publish with us

Policies and ethics