Abstract
The current view of early metazoan phylogeny suggests that the bilaterian body plan arose only once during evolution. This first urbilaterian animal was most likely equipped with an anterior condensation of nerve cells – a brain – from which all brains of modern animals have diverged. Until recently, the ancestor of all bilaterian phyla was viewed as a very simple animal with an accordingly simple brain. Molecular studies, however, demonstrate a multitude of homologous genes that are expressed in similar patterns in the developing brains of vertebrates, insects, and annelids. Taken together, these findings imply that the anatomy of the urbilaterian cerebrum might have been more elaborate than previously assumed. If true, ancient architectural features might have been conserved during evolution and should be identifiable in distantly related modern animal phyla. Comparative studies on representatives of arthropods, onychophorans, and annelids suggest that this is indeed the case. This chapter summarizes recent neuroanatomical surveys that aim to retrace the early evolution of the metazoan brain and to use neuroanatomical data to test conflicting hypothesis on phylogenetic relationships between major animal phyla.
This chapter is based on the habilitation thesis of R.Loesel
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aguinaldo AMA, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489–493
Åkesson B (1963) The comparative morphology and embryology of the head in scale worms (Aphroditidae, Polychaeta). Ark Zool 16:125–163
Bartolomaeus T, Purschke G, Hausen H (2005) Polychaete phylogeny based on morphological data – a comparison of current attempts. Hydrobiologia 535(536):341–356
Bodian D (1937) A new method for staining nerve fibers and nerve endings in mounted paraffin sections. Anat Rec 69:153–162
Bullock TH, Horridge GA (1965) Structure and function in the nervous system of invertebrates. Freeman, San Francisco
Butler AB, Hodos W (2005) Comparative vertebrate neuroanatomy. Evolution and adaption. Wiley, New York
Cajal SR (1911) Histologie du système nerveux de l’Homme et des vertébrés. Maloine, Paris. This is the French translation of Cajal’s original textura del sistema nervioso del Hombre y los vertebrados from 1894
Chase R, Tolloczko B (1993) Tracing neural pathways in snail olfaction: from the tip of the tentacles to the brain and beyond. Micrsc Res Tech 24:214–230
Clarke DD, Sokoloff L (1999) Circulation and energy metabolism of the brain. In: Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD (eds) Basic neurochemistry: molecular. Cellular and medical aspects. Lippincott-Raven, Philadelphia, pp 637–669
Cuvier G (1817) Le règne animal, vol II. Déterville, Paris
Dohle W (2001) Are the insects terrestrial crustaceans? A discussion of some new facts and arguments and the proposal of the proper name ‘Tetraconata’ for the monophyletic unit Crustacea + Hexapoda. In: Deuve T (ed) Origin of the hexapoda. Ann Soc Entomol Fr 37:85–103
Dorsett DA, Hyde R (1969) The fine structure of the compound sense organs on the cirri of Nereis diversicolor. Z Zellforsch 97:512–527
Eernisse DJ (1997) Arthropod and annelid relationships reexamined. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Chapman and Hall, London, pp 43–56
Egelhaaf M, Borst A (1993) Motion computation and visual orientation in flies. Comp Biochem Physiol 104A:659–673
Eisthen HL (2002) Why are olfactory systems of different animals so similar? Brain Behav Evol 59:273–293
Farris SM (2005) Evolution of insect mushroom bodies: old clues, new insights. Arthropod Struct Dev 34:211–234
Farris SM, Roberts NS (2005) Coevolution of generalist feeding ecologies and gyrencephalic mushroom bodies in insects. Proc Natl Acad Sci USA 102:17394–17399
Golgi C (1873) Sulla struttura della sostanza grigia del cervello. Gazz Med Ital Lomb 33:244–246
Gronenberg W (2001) Subdivisions of hymenopteran mushroom body calyces by their afferent supply. J Comp Neurol 436:474–489
Hanesch U, Fischbach KF, Heisenberg M (1989) Neuronal architecture of the central complex in Drosophila melanogaster. Cell Tissue Res 257:343–366
Hanström B (1928) Vergleichende anatomie des nervensystems der wirbellosen tiere unter berücksichtigung seiner funktion. Springer, Berlin
Harzsch S (2002) Neurobiologie und evolutionsforschung: “Neurophylogenie” und die stammesgeschichte der euarthropoda. Neuroforum 4(02):267–273
Heisenberg M (2003) Mushroom body memoir: from maps to models. Nat Rev Neurosci 4(4):266–275
Hennig W (1950) Grundzüge einer theorie der phylogenetischen systematik. Deutscher Zentralverlag, Berlin
Heuer CM, Loesel R (2008) Immunofluorescence analysis of the internal brain anatomy of Nereis diversicolor (Polychaeta, Annelida). Cell Tissue Res 331:713–724
Heuer CM, Loesel R (2009) Three-dimensional reconstruction of mushroom body neuropils in the polychaete species Nereis diversicolor and Harmothoe areolata (Phyllodocida, Annelida). Zoomorphology 128:219–226
Hildebrand JG, Shepherd GM (1997) Mechanisms of olfactory discrimination: convergent evidence for common principles across phyla. Annu Rev Neurosci 20:595–611
Holland ND (2003) Insights into the urbilaterian brain: conserved genetic patterning mechanisms in insect and vertebrate brain development. Nat Rev Neurosci 4:617–627
Holmgren N (1916) Zur vergleichenden anatomie des gehirns von Polychaeten, Onychophoren, Xiphosuren, Arachniden, Crustaceen, Myriapoden und Insekten. K Sven Vetensk Akad Handl 56:1–303
Homberg U (1985) Interneurons of the central complex in the bee brain (Apis mellifera, L.). J Insect Physiol 31:251–264
Homberg U (1987) Structure and functions of the central complex in insects. In: Gupta AP (ed) Arthropod brain: its evolution, development, structure, and functions. Wiley, New York, pp 347–367
Homberg U (2004) In search of the sky compass in the insect brain. Naturwissenschaften 91:199–208
Homberg U, Reischig T, Stengl M (2003) Neural organization of the circadian system of the cockroach Leucophaea maderae. Chronobiol Int 20(4):577–591
Hopkin SP, Read HJ (1992) The biology of millipedes. Oxford University Press, New York
Howard J, Blakeslee B, Laughlin SB (1987) The intracellular pupil mechanism and photoreceptor signal – noise ratios in the fly Lucilia-cuprina. Proc R Soc Lond B 231:415–435
Ilius M, Wolf R, Heisenberg M (2007) The central complex of Drosophila melanogaster is involved in flight control: studies on mutants and mosaics of the gene ellipsoid body open. J Neurogenet 21(4):321–338
Kanzaki R, Arbas EA, Strausfeld NJ, Hildebrand JG (1989) Physiology and morphology of projection neurons in the antennal lobe of the male moth Manduca sexta. J Comp Physiol A 165:427–453
Kanzaki R, Arbas EA, Hildebrand JG (1991) Physiology and morphology of protocerebral olfactory neurons in the male moth Manduca sexta. J Comp Physiol A 168:281–298
Kutsch W, Breidbach O (1994) Homologous structures in the nervous system of Arthropoda. Adv Insect Physiol 24:1–113
Laughlin SB (2001) Energy as a constraint on the coding and processing of sensory information. Curr Opin Neurobiol 11(4):475–480
Laughlin SB, de van Ruyter Steveninck RR, Anderson JC (1998) The metabolic cost of neural information. Nat Neurosci 1:36–41
Lichtneckert R, Reichert H (2005) Insights into the urbilaterian brain: conserved genetic patterning mechanisms in insect and vertebrate brain development. Heredity 94:465–477
Loesel R (2004) Comparative morphology of central neuropils in the brain of arthropods and its evolutionary and functional implications. Acta Biol Hung 55:39–51
Loesel R (2006) Can brain structures help to resolve interordinal relationships in insects? Arthropod Syst Phylogeny 64(2):101–106
Loesel R, Homberg U (1998) Sustained oscillations in an insect visual system. Naturwissenschaften 85:238–240
Loesel R, Homberg U (1999) Histamine-immunoreactive neurons in the brain of the cockroach Leucophaea maderae. Brain Res 842:408–418
Loesel R, Homberg U (2001) Anatomy and physiology of neurons with processes in the accessory medulla of the cockroach, Leucophaea maderae. J Comp Neurol 439(2):193–207
Loesel R, Nässel DR, Strausfeld NJ (2002) Common design in a unique midline neuropil in the brains of arthropods. Arthropod Struct Dev 31:77–91
Lowe CJ, Wu M, Salic A, Evans L, Lander E, Stange-Thomann N, Gruber CE, Gerhart J, Kirschner M (2003) Anteroposterior patterning in hemichordates and the origins of the chordate nervous system. Cell 113:853–865
Mallat JM, Garey JR, Schultz JW (2004) Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Mol Phylogenet Evol 31:178–191
McKinzie ME, Benton JL, Beltz BS, Mellon D (2003) Parasol cells of the hemiellipsoid body in the crayfish Procambarus clarkii: dendritic branching patterns and functional implications. J Comp Neurol 462:168–179
Mori K, Nagao H, Yoshihara Y (1999) The olfactory bulb: coding and processing of odor molecule information. Science 286:711–715
Müller CHG, Rosenberg J, Richter S, Meyer-Rochow VB (2003) The compound eye of Scutigera coleoptrata (Linnaeus, 1758) (Chilopoda: Notostigmophora): an ultrastructural reinvestigation that adds support to the Mandibulata concept. Zoomorphology 122:191–209
Nässel DR, Homberg U (2006) Neuropeptides in interneurons of the insect brain. Cell Tissue Res 326(1):1–24
Nielsen C (2001) Animal evolution, 2nd edn. Oxford University Press, Oxford
Nilsson GE (1996) Brain and body oxygen requirements of Gnathonemus petersii, a fish with an exceptionally large brain. J Exp Biol 199:603–607
Okada R, Rybak J, Manz G, Menzel R (2007) Learning-related plasticity in PE1 and other mushroom body-extrinsic neurons in the honeybee brain. J Neurosci 27(43):11736–11747
Renn SC, Armstrong JD, Yang M, Wang Z, An K, Kaiser K, Taghert PH (1999) Genetic analysis of the Drosophila ellipsoid body neuropil: organization and development of the central complex. J Neurobiol 41:189–207
Rössler W, Oland LA, Higgins MR, Hildebrand JG, Tolbert LP (1999) Development of a glia-rich axon-sorting zone in the olfactory pathway of the moth Manduca sexta. J Neurosci 22:9865–9877
Roth G, Wullimann MF (1996) Evolution der nervensysteme und sinnesorgane. In: Dudel J, Menzel R, Schmidt RF (eds) Neurowissenschaften. Springer, Berlin, pp 1–31
Schachtner J, Schmidt M, Homberg U (2005) Organization and evolutionary trends of primary olfactory centers in Tetraconata (Crustacea + Hexapoda). Arthropod Struct Dev 34(3):257–299
Schmucker M, Schneider G (2007) Processing and classification of chemical data inspired by insect olfaction. Proc Natl Acad Sci USA 104(51):20285–20289
Scholtz G (2002) The Articulata hypothesis – or what is a segment? Org Divers Evol 2:197–215
Scholtz G (2003) Is the taxon articulata obsolete? Arguments in favour of a close relationship between annelids and arthropods. In: Legakis A, Sfenthourakis S, Polymeni R, Thessalou-Legaki M (eds) The new panorama of animal evolution. Proceedings of the 18th international congress of zoology, Pensoft, Sofia, pp 489–501
Shear WA (1998) The fossil record and evolution of the Myriapoda. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Systematics association, special vol series 55. Chapman and Hall, London, pp 211–219
Sierwald P, Bond JE (2007) Current status of the Myriapod class Diplopoda (Millipedes): taxonomic diversity and phylogeny. Annu Rev Entomol 52:401–410
Sinakevitch I, Douglass JK, Scholtz G, Loesel R, Strausfeld NJ (2003) Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa. J Comp Neurol 467:150–172
Strausfeld NJ (1976) Atlas of an insect brain. Springer, Heidelberg
Strausfeld NJ (1998) Crustacean-insect relationships: the use of brain characters to derive phylogeny amongst segmented invertebrates. Brain Behav Evol 52:186–202
Strausfeld NJ (1999) A brain region in insects that supervises walking. Prog Brain Res 123:273–284
Strausfeld NJ (2005) The evolution of crustacean and insect optic lobes and the origins of chiasmata. Arthropod Struct Dev 34(3):235–256
Strausfeld NJ, Barth FG (1993) Two visual systems in one brain: neuropils serving the secondary eyes of the spider Cupiennius salei. J Comp Neurol 328:43–62
Strausfeld NJ, Hildebrand JG (1999) Olfactory systems: common design, uncommon origins? Curr Opin Neurobiol 9:634–639
Strausfeld NJ, Weltzien P, Barth FG (1993) Two visual systems in one brain: neuropils serving the principal eyes of the spider Cupiennius salei. J Comp Neurol 328:63–75
Strausfeld NJ, Buschbeck EK, Gomez RS (1995) The arthropod mushroom body: its functional roles, evolutionary enigmas and mistaken identities. In: Breidbach O, Kutsch W (eds) The nervous systems of invertebrates: an evolutionary and comparative approach. Birkhäuser, Basel, pp 349–381
Strausfeld NJ, Hansen L, Li Y, Gomez RS, Ito K (1998) Evolution, discovery, and interpretation of arthropod mushroom bodies. Learn Mem 5:11–37
Strausfeld NJ, Strausfeld CM, Loesel R, Rowell D, Stowe S (2006a) Arthropod phylogeny: onychophoran brain organization suggests an archaic relationship with a chelicerate stem lineage. Proc R Soc B 273:1857–1866
Strausfeld NJ, Strausfeld CM, Stowe S, Rowell D, Loesel R (2006b) The organization and evolutionary implications of neuropils and their neurons in the brain of the onychophoran Euperipatoides rowelli. Arthropod Struct Dev 35(3):169–196
Strauss R (2003) Control of Drosophila walking and orientation behavior by functional subunits localized in different neuropils in the central brain. In: N Elsner, H Zimmermann (eds) Proceedings of the 29th göttingen neurobiol conference, Thieme, 2003, p 206
Struck TH, Schult N, Kusen T, Hickman E, Bleidorn C, McHugh D, Halanych KM (2007) Annelid phylogeny and the status of Sipuncula and Echiura. BMC Evol Biol 7:57
Urbach R, Technau GM (2003) Early steps in building the insect brain: neuroblast formation and segmental patterning in the developing brain of different insect species. Arthropod Struct Dev 32(1):103–123
Utting M, Agricola HJ, Sandeman R, Sandeman D (2000) Central complex in the brain of crayfish and its possible homology with that of insects. J Comp Neurol 416:245–261
Wägele JW, Misof B (2001) On quality of evidence in phylogeny reconstruction: a reply to Zrzavy’s defence of the ‘Ecdysozoa’ hypothesis. J Zool Syst Evol Res 39:165–176
Wägele JW, Erikson T, Lockhart P, Misof B (1999) The Ecdysozoa: artifact or monophylum? J Zool Syst Evol Res 37:211–223
Wegerhoff R, Breidbach O, Lobemeier M (1996) Development of locustatachykinin immunopositive neurons in the central complex of the beetle Tenebrio molitor. J Comp Neurol 375:157–166
Wheeler WC, Giribet G, Edgecombe GD (2004) Arthropod systematics: the comparative study of genomic, anatomical, and paleontological information. In: Cracraft J, Donoghue MJ (eds) Assembling the tree of life. Oxford University Press, New York, pp 281–318
Williams JLD (1975) Anatomical studies of the insect central nervous system: a ground-plan of the midbrain and an introduction to the central complex in the locust, Schistocerca gregaria (Orthoptera). J Zool 176:67–86
Wollesen T, Loesel R, Wanninger A (2008) Distribution of FMRFamidergic neurons in the central nervous system of the cephalopod mollusc Idiosepius notoides. Acta Biol Hung 59:111–116
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Loesel, R. (2011). Neurophylogeny: Retracing Early Metazoan Brain Evolution. In: Pontarotti, P. (eds) Evolutionary Biology – Concepts, Biodiversity, Macroevolution and Genome Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20763-1_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-20763-1_11
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20762-4
Online ISBN: 978-3-642-20763-1
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)