Advertisement

Basic Problems in Self-Assembling Robots and a Case Study of Segregation on Tribolon Platform

  • Shuhei Miyashita
  • Aubery Marchel Tientcheu Ngouabeu
  • Rudolf M. Füchslin
  • Kohei Nakajima
  • Christof Audretsch
  • Rolf Pfeifer
Part of the Studies in Computational Intelligence book series (SCI, volume 355)

Abstract

It has been a quite while since people realized that self-assembly technique may be a strong method to manufacture 3D micro products. In this contribution, we investigate some major concerns about realizing such a small sized robot. First we introduce the concept of self-assembly and introduce examples both from nature and artificial products. Followed by the main problems in self-assembly which can be seen in various scales, we classify them into four groups - (A) assembly constraint issues, (B) stochastic motion issues, (C) interactions on physical property issues, and (D) engineering issues. Then we show a segregation effect with our developed platform as an example of self-organizing behavior achieved in a distributed manner.

Keywords

Passive Module Transfer Entropy Modular Robot Mismatch Problem Vibration Motor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbott, J.J., Nagy, Z., Beyeler, F., Nelson, B.J.: Robotics in the small. IEEE Robotics & Automation Magazine 14, 92–103 (2007)CrossRefGoogle Scholar
  2. 2.
    Balch, T.: Hierarchic social entropy: An information theoretic measure of robot group diversity. Autonomous Robots 8, 209–237 (2000)CrossRefGoogle Scholar
  3. 3.
    Boncheva, M., Andreev, S.A., Mahadevan, L., Winkleman, A., Reichman, D.R., Prentiss, M.G., Whitesides, S., Whitesides, G.: Magnetic self-assembly of three-dimensional surfaces from planar sheets. PNAS 102, 3924–3929 (2005)CrossRefGoogle Scholar
  4. 4.
    Boncheva, M., Ferrigno, R., Bruzewicz, D.A., Whitesides, G.M.: Plasticity in self-assembly: Templating generates functionally different circuits from a single precursor. Angew. Chem. Int. Ed. 42, 3368–3371 (2003)CrossRefGoogle Scholar
  5. 5.
    Boncheva, M., Gracias, D.H., Jacobs, H.O., Whitesides, G.M.: Biomimetic self-assembly of a functional asymmetrical electronic device. PNAS 99, 4937–4940 (2002)CrossRefGoogle Scholar
  6. 6.
    Bowden, N., Terfort, A., Carbeck, J., Whitesides, G.M.: Self-assembly of mesoscale objects into ordered two-dimensional arrays. Science 276, 233–235 (1997)CrossRefGoogle Scholar
  7. 7.
    Bowden, N., Weck, M., Choi, I.S., Whitesides, G.M.: Molecule-mimetic chemistry and mesoscale self-assembly. Acc. Chem. Res. 34, 231–238 (2001)CrossRefGoogle Scholar
  8. 8.
    Breivik, J.: Self-oranization of template-replicating plolymers and the spontaneous rise of genetic information. Entropy 3, 273–279 (2001)CrossRefGoogle Scholar
  9. 9.
    Brown, D.: Tracker video analysis and modeling tool (2009), http://www.cabrillo.edu/~dbrown/tracker/
  10. 10.
    Cohn, M.B., Kim, C.-J.: Self-assembling electrical networks: An application of micromachining technology. In: International Conference on Solid-State Sensors and Actuators, pp. 490–493 (1991)Google Scholar
  11. 11.
    Cugat, O., Delamare, J., Reyne, G.: Magnetic micro-actuators and systems (MAGMAS). IEEE Trans. Magnetics 39(5), 3607–3612 (2003)CrossRefGoogle Scholar
  12. 12.
    Demaine, E.D., Hohenberger, S., Liben-Nowell, D.: Tetris is hard, even to approximate. Technical report, Cornell University Library (2002), arXiv.org Google Scholar
  13. 13.
    Gracias, D.H., Tien, J., Breen, T.L., Hsu, C., Whitesides, G.M.: Forming electrical networks in three dimensions by self-assembly. Science 289, 1170–1172 (2000)CrossRefGoogle Scholar
  14. 14.
    Griffith, S., Goldwater, D., Jacobson, J.: Robotics: Self-replication from random parts. Nature 437, 636 (2005)CrossRefGoogle Scholar
  15. 15.
    Grzybowski, B.A., Radkowski, M., Campbell, C.J., Lee, J.N., Whitesides, G.M.: Self-assembling fluidic machines. App. phys. lett. 84, 1798–1800 (2004)CrossRefGoogle Scholar
  16. 16.
    Grzybowski, B.A., Stone, H.A., Whitesides, G.M.: Dynamic self-assembly of magnetized, millimetre-sized objects rotating at a liquid-air interface. Nature 405, 1033 (2000)CrossRefGoogle Scholar
  17. 17.
    Grzybowski, B.A., Winkleman, A., Wiles, J.A., Brumer, Y., Whitesides, G.M.: Electrostatic self-assembly of macroscopic crystals using contact electrification. Nature 2, 241–245 (2003)CrossRefGoogle Scholar
  18. 18.
    Hosokawa, K., Shimoyama, I., Miura, H.: Dynamics of self-assembling systems: Analogy with chemical kinetics. Artificial Life 1(4), 413–427 (1994)CrossRefGoogle Scholar
  19. 19.
    Ishiguro, A., Shimizu, M., Kawakatsu, T.: A modular robot that exhibits amoebic locomotion. Rob. Aut. Sys. 54, 641–650 (2006)CrossRefGoogle Scholar
  20. 20.
    Klavins, E.: Programmable self-assembly. IEEE Cont. Sys. Mag. 27, 43–56 (2007)CrossRefGoogle Scholar
  21. 21.
    Wilson, M., Melhuish, C., Sendova-Franks, A.: Multi-object segregation: ant-like brood sorting using minimalism robots. In: Proc. Seventh International Conf. on the Simulation of Adaptive Behaviour, Edinburgh, UK, pp. 369–370 (2002)Google Scholar
  22. 22.
    Mao, C., Thalladi, V.R., Wolfe, D.B., Whitesides, S., Whitesides, G.M.: Dissections: Self-assembled aggregates that spontaneously reconfigure their structures when their environment changes. J. Am. Chem. Soc 124(49), 14508–14509 (2002)CrossRefGoogle Scholar
  23. 23.
    Miyashita, S., Kessler, M., Lungarella, M.: How morphology affects self-assembly in a stochastic modular robot. In: IEEE International Conference on Robotics and Automation (2008)Google Scholar
  24. 24.
    Motokawa, T.: Time of an elephant, time of a mouse. In: CHUO-KORON-SHINSHA, INC. (1992)Google Scholar
  25. 25.
    Ngouabeu, A.M.T., Miyashita, S., Füchslin, R.M., Nakajima, K., Göldi, M., Pfeifer, R.: Self-organized segregation effect on water based self-assembling robots. In: Artificial Life 12, Odense, Denmark (2010)Google Scholar
  26. 26.
    Pelesko, J.A.: SELF ASSEMBLY. Chapman & Hall/CRC, Boca Raton (2007)zbMATHCrossRefGoogle Scholar
  27. 27.
    Penrose, L.S.: Self-reproducing. Sci. Amer. 200(6), 105–114 (1959)CrossRefGoogle Scholar
  28. 28.
    Purcell, E.M.: Life at low reynolds number. Amer. J. Phys. 45, 3–11 (1977)CrossRefGoogle Scholar
  29. 29.
    Schreiber, T.: Measuring information transfer. Physical Review Letters 85, 461–464 (2000)CrossRefGoogle Scholar
  30. 30.
    Wilson, M., Melhuish, C., Sendova-Franks, A.B., Scholes, S.R., Franks, N.R., Melhuish, C.: Brood sorting by ants: Two phases and differential diffusion. Animal Behaviour 68, 1095–1106 (2004)CrossRefGoogle Scholar
  31. 31.
    Stambaugh, J., Lathrop, D.P., Ott, E., Losert, W.: Pattern formation in a monolayer of magnetic spheres. Pysical Leview E. 68, 026207-1–026207-5 (2003)Google Scholar
  32. 32.
    Staniek, M., Lehnertz, K.: Symbolic transfer entropy. Physical Review Letters 100, 158101–158101 (2008)CrossRefGoogle Scholar
  33. 33.
    Sumioka, H., Nakajima, K., Lungarella, M., Pfeifer, R.: Complexity detection based on bidirectional information flow (submitted)Google Scholar
  34. 34.
    Tsutsumi, D., Murata, S.: Multistate part for mesoscale self-assembly. In: SICE Annual Conference (2007)Google Scholar
  35. 35.
    White, P., Kopanski, K., Lipson, H.: Stochastic self-reconfigurable cellular robotics. In: Proc. Int. Conf. on Robotics and Automation, vol. 3, pp. 2888–2893 (2004)Google Scholar
  36. 36.
    Whitesides, G.M.: The ‘right’ size in nanobiotechnology. Nature 21(10), 1161–1165 (2003)CrossRefGoogle Scholar
  37. 37.
    Whitesides, G.M., Grzybowski, B.: Self-assembly at all scales. Science 295, 2418–2421 (2002)CrossRefGoogle Scholar
  38. 38.
    Wolfe, D.B., Snead, A., Mao, C., Bowden, N.B., Whitesides, G.M.: Mesoscale self-assembly: Capillary interactions when positive and negitive menisci have similar amplitudes. Langmuir 19, 2206–2214 (2003)CrossRefGoogle Scholar
  39. 39.
    Yamaki, M., Higo, J., Nagayama, K.: Size-dependent separation of colloidal particles in two-dimensional convective self-assembly. American Chemical Society 11, 2975–2978 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Shuhei Miyashita
    • 1
  • Aubery Marchel Tientcheu Ngouabeu
    • 1
  • Rudolf M. Füchslin
    • 1
  • Kohei Nakajima
    • 1
  • Christof Audretsch
    • 1
  • Rolf Pfeifer
    • 1
  1. 1.Artificial Intelligence Laboratory ZurichUniversity of ZurichZurich

Personalised recommendations