Advertisement

On Self-Optimized Self-Assembling of Heterogeneous Multi-robot Organisms

  • Serge Kernbach
  • Benjamin Girault
  • Olga Kernbach
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 355)

Abstract

This chapter is devoted to a bio-inspired self-assembling of heterogeneous robot modules into specific topological configurations. The approach involves several algorithmic inspirations from biological regulatory networks for achieving environmental dependability and considers constraint-based optimization techniques for finding optimal connections between heterogeneous modules. Scalability and locality of sensor information are addressed.

Keywords

Mixed Integer Linear Programming Functional Constraint Optimization Controller Local Cost Global Cost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ariga, K., Hill, J.P., Lee, M.V., Vinu, A., Charvet, R., Acharya, S.: Challenges and breakthroughs in recent research on self-assembly. Science and Technology of Advanced Materials 9(1), 014109 (2008)CrossRefGoogle Scholar
  2. 2.
    Whitesides, G.M., Kriebel, J.K., Love, J.C.: Molecular engineering of surfaces using self-assembled monolayers. Science Progress 88, 17–48(32) (2005)CrossRefGoogle Scholar
  3. 3.
    Levi, P., Kernbach, S. (eds.): Symbiotic Multi-Robot Organisms: Reliability, Adaptability, Evolution. Springer, Heidelberg (2010)zbMATHGoogle Scholar
  4. 4.
    Chiang, C.-J., Chirikjian, G.: Modular robot motion planning using similarity metrics. Auton. Robots 10(1), 91–106 (2001)zbMATHCrossRefGoogle Scholar
  5. 5.
    Miyashita, S., Hadorn, M., Hotz, P.E.: Water floating self-assembling agents. In: Nguyen, N.T., Grzech, A., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2007. LNCS (LNAI), vol. 4496, pp. 665–674. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Castano, A., Shen, W.-M., Will, P.: Conro: Towards deployable robots with inter-robots metamorphic capabilities. Journal of Autonomous Robots 8, 309–324 (2000)CrossRefGoogle Scholar
  7. 7.
    Samori, P., Francke, V., Müllen, K., Rabe, J.P.: Self-assembly of a conjugated polymer: From molecular rods to a nanoribbon architecture with molecular dimensions. Chemistry - A European Journal 5, 2312–2317 (1999)CrossRefGoogle Scholar
  8. 8.
    Kernbach, S.: Towards application of collective robotics in industrial environment. In: Rigatos, G. (ed.) Industrial Systems: Modelling, Automation and Adaptive Behaviour, pp. 18–49. IGI Global (2010)Google Scholar
  9. 9.
    Yu, C.-H., Haller, K., Ingber, D., Nagpal, R.: Morpho: A self-deformable modular robot inspired by cellular structure. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 3571–3578 (2008)Google Scholar
  10. 10.
    Liu, W., Winfield, A.F.T.: Autonomous morphogenesis in self-assembling robots using IR-based sensing and local communications. In: Dorigo, M., Birattari, M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P., Floreano, D., Gambardella, L.M., Groß, R., Şahin, E., Sayama, H., Stützle, T. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 107–118. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Huie, J.C.: Guided molecular self-assembly: a review of recent efforts. Smart Materials and Structures 12(2), 264 (2003), http://stacks.iop.org/0964-1726/12/i=2/a=315 CrossRefGoogle Scholar
  12. 12.
    Davidson, E.H.: The Regulatory Genome: Gene Regulatory Networks In Development And Evolution. Academic Press, London (2006)Google Scholar
  13. 13.
    Jacob, C., Burleigh, I.: Genetic programming inside a cell. In: Genetic Programming Theory and Practice III, vol. 9, pp. 191–206. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Banzhaf, W.: On evolutionary design, embodiment, and artificial regulatory networks. In: Iida, F., Pfeifer, R., Steels, L., Kuniyoshi, Y. (eds.) Embodied Artificial Intelligence. LNCS (LNAI), vol. 3139, pp. 284–292. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Kernbach, S.: From robot swarm to artificial organisms: Self-organization of structures, adaptivity and self-development. In: Levi, P., Kernbach, S. (eds.) Symbiotic Multi-Robot Organisms: Reliability, Adaptability, Evolution, pp. 5–25. Springer, Heidelberg (2010)Google Scholar
  16. 16.
    Kernbach, S.: Heterogeneous self-assembling based on constraint satisfaction problem. In: Martinoli, A., Mondada, F. (eds.) 10th International Symposium on Distributed Autonomous Robotics Systems. Springer Tracts in Advanced Robotics. Springer, Heidelberg (2011)Google Scholar
  17. 17.
    Salemi, B., Shen, W.-M.: Distributed behavior collaboration for self-reconfigurable robots. In: Proc. of the IEEE International Conference on Robotics and Automation (ICRA-2004), New Orleans, USA, pp. 4178–4183 (2004)Google Scholar
  18. 18.
    Lau, H.Y.K., Ko, A.W.Y., Lau, T.L.: The design of a representation and analysis method for modular self-reconfigurable robots. Robot. Comput.-Integr. Manuf. 24(2), 258–269 (2008)CrossRefGoogle Scholar
  19. 19.
    Castano, A., Will, P.: Representing and discovering the configuration of CONRO robots. In: Proc. of IEEE Int. Conf. on Robotics and Automation (ICRA-2001), vol. 4, pp. 3503–3509. IEEE, Los Alamitos (2001)Google Scholar
  20. 20.
    Burkard, R., Dell’Amico, M., Martello, S. (eds.): Assignment Problems. Society for Industrial and Applied Mathematics (2009)Google Scholar
  21. 21.
    Kernbach, S., Meister, E., Scholz, O., Humza, R., Liedke, J., Ricotti, L., Jemai, J., Havlik, J., Liu, W.: Evolutionary robotics: The next-generation-platform for on-line and on-board artificial evolution. In: Tyrrell, A. (ed.) Proc. of the IEEE Congress on Evolutionary Computation (IEEE CEC-2009). IEEE Press, Trondheim (2009)Google Scholar
  22. 22.
    Loiola, E., de Abreu, N.M., Boaventura-Netto, P., Hahn, P., Querido, T.: A survey for the quadratic assignment problem. European Journal of Operational Research 176(2), 657–690 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Kornienko, S., Kornienko, O., Priese, J.: Application of multi-agent planning to the assignment problem. Computers in Industry 54(3), 273–290 (2004)CrossRefGoogle Scholar
  24. 24.
    Kernbach, S., Meister, E., Schlachter, F., Kernbach, O.: Adaptation and self-adaptation of developmental multi-robot systems. International Journal On Advances in Intelligent Systems 3(1,2), 121–140 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Serge Kernbach
    • 1
  • Benjamin Girault
    • 1
  • Olga Kernbach
    • 1
  1. 1.Institute of Parallel and Distributed SystemsUniversity of StuttgartStuttgartGermany

Personalised recommendations